DTIC

 ELECTF
AFIT/GEO/ENG/91D-02 DEC261991 & B

3 625
\m\‘m\\\\\\mﬁ\m\mm\\m\

FUNCTION PREDICTION
USING RECURRENT NEURAL NETWORKS

THESIS

Randall L. Lindsey
Captain
AFIT/GEO/ENG/91D-02

Approved for public release; distribution unlimited

e 1%8 91 1224 037




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden tor this collection of information s estimated to average 1 hour per response, induding the time for revievang instructions, searching existing data sources,
gathenng and mantaming the data needed, and compieting and reviewiny the caliecton of information  Send comments regarding this burden estimate of any other aspect of this
collection of information, 1nuuding suggestions tor reducing thes burden to Washington Headguarters Services, Directorate for intyrmation Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arthington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503,

] N € ONLY (L blank REPORT D 3_REPORT TYPE AND DATES COVERED
1. AGENCY USE O (Leave blank) ecem“:er%@l ﬁas errs ’ﬁles{\s

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
FUNCTION PREDICTION USING

RECURRENT NEURAL NETWORKS

5. AUTHOR({) . .
Randall L. Lindsey, Captain, USAF

L TR TP E T

7. PERFORMING ORGANIZATION NAME(S} AND ADDRESS(ES) 8. :gggos}%_nm&&%mmzm:ou
. . ] R
Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GEO/ENG/91D-02
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS{ES) 10. SPONSORING / MONITORING
Mike Hinman AGENCY REPORT NUMBER
RADC/IRR
: Griffis AFB NY 13441

£,

11. SUPPLEMENTARY NOTES

e

121. DISTRIBJSPON/ VAILABILITY SJ,ATa ENT . 12b. DISTRIBUTION CODE
pproved for public release; distribution unlimited

AR BACSK  TNTIG IR V4, 10| S0 A0 3ab IR s RO 40 0§

13, ABSTRACT (M. 200 word ] . . . ]
A &ﬂy recu(rrg)x({tm neur x%t’wgrk was applied to the function prediction problem. The real-time recurrent learning

(RTRL) algorithm was modified and tested for use as a viable function predictor. The modification gave the
algorithm a variable learning rate and a linear/sigmoidal output selection. Verifying the networks ability to
temporally learn both the classic exclusive-OR (XOR) problem and the internal state problem, the network was
then used to simulate the frequency response of a second order IIR lowpass Butterworth filter. The recurrent
network was then applied to two problems: head position tracking, and voice data reconstruction. The accuracy
at which the network predicted the pilot’s head position was compared to the best linear statistical prediction
algorithm. The application of the network to the reconstruction of voice data showed the recurrent network’s
ability to learn temporally encoded sequences, and make decisions as to whether or not a speech signal sample
was considered a fricative or a voiced portion of speech. (\

Wy B 00

14. SUBJECT TERMS 15.154 MBER OF PAGES
Recurrent Neural Networks, Real-time Recurrent Learning Algorithm, Function Pre-
diction, Recurrent Network Applications, Neural Nets, Recurrent Backpropagation 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION ]19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPQR OF THS, PAGE Of ABSTRACT
Unclassifie Unclassﬁietf Unclassified UL
;‘\JSN 754G 01 280-5599 Stardard “orm 298 (Rev 2-89)

Peoccrtynd by «NST SIS 239 18
8132

o - _ PR




GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcang and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. it is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite atleast the year.

Block 3. Type of Report and Dates Covered.
State whether reportisinterim, final, etc. if
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Blocl:4. Title and Subtitle. Atitleis taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than cne volume,
repeat the primary title, add volt me number, and
include subtitle for the specific volume. On
classified documenits enter the title classification
in parenthesaes.

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may include program
element number(s), project number(s}), task
number(s), and work unit number(s). Use the
following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Namae(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compuler, this should follow
the name(s).

Block 7. Performing Orgarization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s)

and Address(es). Self-explanaicry.

Block 10. Sponsoring/Monitaring Agency
Report Number. (if known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with. . ; Trans. of ..; Tobe
published in.. . When a reportis revised, include
astatement wigiher the r.ew report supersedes
or supnlements the oider repor..

Block 12a., Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leaveblank.

DOE - Enter DOE distribution categories
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave bhlank.

NTIS - Leaveblank.

Block 13. Abstract. include a brief (Maximum
200 words) factual summary of the most
significar.t ‘~formation contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classificationin
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). f form contains classified
information, stamp classification on the top and
bottom of the page.

8iock 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract, Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstraciis to be limited. If blank, the abstract
is assumed to be ur amited.

stendard Form 298 Back (Rev. 2-89)




AFIT/GEO/ENG/91D-02

FUNCTION PREDICTION
USING RECURRENT NEURAL NETWORKS

THESIS
Presented to the Faculty of the School of Engineering o
4 O T, )
of the Air Force Institute of Technology f c:n, '
Air University \:is_j
In Partial Fulfillment of the
Requirements for the Degree of /
Master of Science in Electrical Engineering ,_Acesasion ¥or ,
NTTS  GRAMI
§UTES TAB 0
Unannciasd O
Justifiecat 1u1__.___,.:_._._. -
Randall L. Lindsey, B.S.E.E. b
Captain _Dist ;’ibu‘?‘mu/m o
__:q_\.la_’i’lab 1itty Codes
| ;Avail ald/or”.ﬁ
:Diat spsgial
December, 1991 9\’\ I

Approved for public release; distribution unlimited




Acknowledgments

The last thing I wanted to research at AFIT was any fopic dealing with neural
networks. Yet, after seeing the utility of neural networks in solving many practical
applications, my view of neural network research changed drastically. Thanks to the
initiative of my thesis advisor, Capt Dennis Ruck, and the insight of my committee
members, Maj Steven Rogers and Dr Matthew Kabrisky, [ was able to research the specific
area of neural networks that interested me the most: recurrent neural networks. I would
never have conceived of this research topic, let alone attempted it, without their guidance
and direction. In addition, many thanks belong to by faithful wife, Linda, whose support
and understanding kept me coming back to school with a smile on my face and a song in
my heart. Finally, it was my faith in Jesus Christ that helped me see the light at the end of
the tunnel. With this in mind, I was always able to keep a balanced perspective between
school and my family life. As important as this education is in my career, I would have
dropped it in a second if it meant compromising my faith or my family. Thank you Jesus

for giving me the strength to carry this commitment through.

Randall L. Lindsey




TR U SR AR T ESERE T

Table of Contents

Page

Acknowledgments . . . . . ... ... ... e i
TableofContents . . . . .. ... ... . 0.t iiivitnenennn iii
Listof Figures . . . . .. ... .. ... . .. it vi
Listof Tables ... ... ... ... .. ... . .. viii
Abstract . . . . . .. e e e e e e e ix
L Infroduction . . . .. ... ... ..t 1
1.1 Problem . ........... ... ... ... . ..... 2

12 Background . ... .......... ... . . . ... .. 2

13 Assumptions . . . ... ....... ... ..., 2

14 Scope . ... ... .. e e 2

1.5 Approach . ... ....... ... ... ... ... .. 3

IL Literature Review . . ... ... ... ... .. ... . ... ... 4
21 Imtroduction . ..............c0ouve... 4

22 Background . . ... ........ .. ... ..., 4

23 SLOPE . . e e e e e e e e 7

2.4 Backpropagation through time (BPTT) . . ... .. ... .. 7

25 Modified BPTT . .. .. ... ... ... .. .u... 9

2.6 Real-Time Recurrent Learning(RTRL) . . .. ... ... .. 9

27 SubgroupedRTRL .. ..................... 10

28 Summary .. ...... .. ... e 10

iii




3.1
3.2
33
34

3.5

4.1
42
4.3
44

4.5
4.6
4.7

Methodology . . ... .. ... i i

Introduction . . . . . . . . . . . e e
RTRL Algorithm . . ... ... ...............
Modifications . . . ... .. .. ... ...

342 IntemalState ....................
343 SecondOrderIIR LowpassFilter . . ... ... ..
Applications . . . . . .... .. ... .. ... .. ...
3.5.1 Predicting 3-D Head PositioninTime . . . . . . ..
3.5.2 Voice Data Reconstruction . . ...........

Resultsand Discussion . . . . . . . . . . . i v v o i v e e e e e

Modifications . . . . . . . . . . . . . e

Second-Order IIR Lowpass Filter Simulation . . . .. .. ..
44.1 ImpulseResponse . .................
442 UnitStepResponse . ... .............
443 SinusoidalResponse. .. ..............
444 Pseudo-Random Number Sequence Response . . .

Predicting 3-D Head PositioninTime ., . . . ... .... ..

Voice DataReconstruction . . . .. ..............

iv




EEERC

Page

V. Conclusions and Recommendations . . . ................. 53
51 Conclusions . . ... ... ... i nunnnn 53

52 Recommendations . . . ..............c.c0o.... 54

53 FutureResearch . . . . . ... ... ... .......... 54

Appendix A. Software Development . . ... ... ............ 55
Al FileParameters . . . ... ... ... ... 55

A2 Environment . . . . . ... ... ... ... 56

A3 Output . . . ..... ... . e 57

Appendix B. Recurrent Neural Network SourceCode . . . .. .. .. .. 58
Appendix C. Source Code for Creationof Data . . .. .......... 75
Appendix D. Utility SourceCode . ... ................. 78
Appendix E. Statistical Prediction Algorithm and Source Code . . . . .. 90
E.1 Statistical Prediction Algorithm . . . . ... ... ...... 9

E2 SourceCodeListing . . . ................... 91

Bibliography . .. ......... ... .. .. .. .. . ... 98
'/ L N 100




Figure

L e LT R o o

podk pumh ek pemd et ek e
U8 RBRREBE8 s3I aarrs e =3

List of Figures

Single-layer perceptron with sigmoidal processing. . . . . . .. ... ..
A general recurrent neuralnetwork . . . .. .. ... ... .. .....
XOR problemfeaturespace . . . . .. ... ... ... ... ... ...
Pseudo-random spatial distribution of the XOR trainingset . . . . . . ..
Network configuration for learning internal state . . . . . ... ... ..
Network configuration for second order IIR lowpass filtertest . . . . . .
Leamning rate modificationresults . . . . . ... ... ..........
XOR spatial distribution decisionregions . . . . ... ........ ..
XOR spatial distribution decisionregions . . . . . ... ... .... .,
Internal state training output after20epochs . . . .. ... ... .. ..
Internal state test results after training20epochs . . . .. ... ... ..
Desired frequency response of the Butterworth filter . . . .. .. .. ..
Filter impulse response training results . . . . . ... ..........
Filter frequency spectrum trainingresults . . . . . .. ... ..... ..
Unit stepresponsetestresults . . . . ... ................
Unit step frequency response testresults . . . .............
Cosine wave response testresults . . . . ... ..............
Cosine wave frequency response testresults . . . . ... .. .. .. ..
Sine wave responsetestresults . . ... .................
Sine wave frequency response testresults . . . . . .. .. ... ... ..
Pseudo-random number sequence response testresults . . . . . ... ..
Pseudo-random number sequence spectral response test results . . . . . .
Predicting head position training results (2timesteps) . . .. ... ...

Comparison of statistical prediction and network prediction error . . . . .

vi

Page




Figure Page

25. Network classification results forvoicedata . .. .......... .. 50
26. Network decisions made in the reconstruction program . . . . . ... .. 51

vii




List of Tables

Table Page
1.  The time separation for ab pairs in the training dataset . . . . . .. ... 23
2.  The time separation for ab pairsinthe testdataset . . .. ... ... .. 23

3.  Training weights for the internal state problem . . . . . ... ... ... 38

viii




A¥IT/GEO/ENG/91D-02

Abstract

A fully recurrent neural network was applied to the function prediction proticin.
The real-time recurrent learning (RTRL) algorithm was modified and tested for use s a
viable function predictor. The modification gave the algorithm a variable learning rate and
a linear/sigmoidal output selection, Verifying the networks ability to temporally learn both
‘he classic exclusive-OR (XOR) problem and the internal state problem, the network was
then used to simulate the frequency response of a second order IIR lowpass Butterworth
filter. The recurrent network was then applied to two problems: head position tracking, and
voice data reconstruction. The accuracy at which the network predicted the pilot's head
positicn was compared to the best linear statistical prediction algorithm. The application
of the network to the reconstruction of voice data showed the recurrent network’s ability
to learn temporally encoded sequences, and make decisions as to whether or not a sp2acih

signal sample was considered a fricative or a voiced portion of speech.

ix



FUNCTION PREDICTION
USING RECURRENT NEURAL NETWORKS

L Introduction

The ability of machines to perform accurate function prediction remains an unsolved
problem. Although conventional sensors used in military applications provide enough in-
formation for a human to predict an event’s outcome, the extension to automatic prediction
by machines is still impractical using current computer architectures. According to Webster

(8), to predict is to

declare in advance; esp: foretell on the basis of observation, experience, or
scientific reason.

Therefore, function prediction, as defined in this thesis, is the declaration of the future

value of a specific function based upon that function’s history.

The use of recurrent neural network theory provides a novei approach to solving this
problem. Biological neural networks readily and easily process temporal information; ar-
tificial neural networks should do the same. Formvlated from biological research, artificial
neural networks provide a unique approach to solving problems that could prove quite suc-
cessful in the areas of speech processing, image recognition, and function prediction (7).
Recurrent neural networks are artificial neural networks which permit the encoding and
learning of temporal sequences. This is an important feature in a world governed by time
dependent processes. Thus, properly trained recurrent neural networks could prove quite

successful in applications involving time dependencies, including function prediction.




1.1 Problem

The goal of this thesis is to perform accurate function prediction using recurrent
neural networks.

1.2 Background

Publications in the field of neural networks span a multi-disciplinary spectrum:
neurobiology, physics, psychology, medical science, mathematics, computer science, and
engineering. As such, it is difficult to accurately compile a thorough summary of where
neural network technology stands today. However, a broad sampling of current literature
centered on the topic of recurrent backpropagation neural networks yields a more focused
review. Chapter II contains highlights of some of the most promising recurrent neural
network algorithms, namely backpropagation through time (BPTT), modified BPTT, real-
time recurrent learning (RTRL), and subgrouped RTRL.

As technology improves, new and innovative algorithms are discovered which help
researchers and engineers alike in solving time-dependent problems. All of the algorithms
previously discussed possess the ability, if properly trained, to tackle many difficult tem-
poral tasks. Several of these algorithms are simply modifications of the backpropagation

through time method, or the real-time recurrent learning method.

1.3 Assumptions

It is assumed that the input feature vectors have already been selected for use in

training and testing the network.

1.4 Scope

The scope of this thesis will focus on solving the function prediction problem using
recurrent neural network theory. This theory is based on a modification of the RTRL
algorithm (23).




1.5 Approach

Function prediction using recurrent neura! networks will be accomplished in four
steps. First, the recurrent neural network program must be created. The RTRL algorithm
will he coded using the C programming language. It will be tested using several temporally
encoded datz sets to verify its performance. Second, the network’s output will be modified
to determine if linear outputs combined with sigmoidal "hidden units" (processing units
which have no external connections) will further optimize the network’s response. This
modification will enable the network to predict unbounded functions. Third, a variabie
learning rate will be added to the network training algorithm to enhance the rate of
convergence. Finally, several functions will be used to test the network’s prediction

abilities, including two specific applications.




II. Literature Review

2.1 Introduction

In this literature review, the current state of recurrent neural network technology is

summarized.

Biological neural networks readily and easily process temporal information; artificial
neural networks should do the same. Formulated from biological research, artificial neural
networks provide a heuristic approach to solving problems that could prove quite successful
in the areas of speech processing and image recognition (7). Recurrent neural networks
are artificial neural networks which use feedback to encode and learn temporal sequences.
This is an important feature in a world governed by time dependent processes. Thus,
properly trained recurrent neural networks could prove quite successful in applications

involving time dependencies.

This section contains a short background on basic neural network theory to aid
the reader’s comprehension of that subject. In addition, the following algorithms are
highlighted: backpropagation through time (BPTT), modified BPTT, real-time recurrent
leaming (RTRL), and subgrouped RTRL. These algorithms summarize the current im-

provements in recurrent backpropagation neural network technology.

2.2 Background

Attificial neural networks are nothing more than an application of biological concepts
to electronic machines. Another name for an artificial neural network is a neuromime. It is
called a neuromime because it attempts to copy or mimic the response of a true biological

neuron, the most basic processing element of the brain (13).

During the late 1950’s, Rosenblatt invented a new class of machines which seemed
to offer what many researchers thought was a natural and powerful model of machine

learning (15). It was called the perceptron. The basic perceptron model consists of an




array of input sensory nodes randomly connected to a second array of associative nodes.
The random connections are called weights. The weights are randomly generated values
in the range [-1,1]. Each of the secondary nodes produces an output only if enough of
the sensory nodes connected to it are activated. The sensory nodes can be viewed as the
means by which outside information is captured by the machine, and the associative nodes

can be vicwed as the inpur 10 the machine.

The output, or icsponse, of the perceptron is proportional to the weighted sum of the
associative node responses. In other words, if z; denotes the response of the ith associative

node and w, denotes the corresponding connection weight, then the response is given by

R, = z": W;T;
i=1
where n is the total number of associative nodes. Thus for a positive R, the stimulus is
said to belong to class 1, and for a negative R, the stimulus is said to belong to class 2.
That is how a decision is made. In its most basic form, the basic perceptron is simply
an implementation of a linear decision function. The perceptron learns by changing the
connection weights in such a way as to minimize the total response error. The nodal error
is the difference between the desired output and the actual computed response of the node.

In equation form, the error is given by
e, =d, — R,

where e, is the error of node n, and d,, is the desired value of node n. Therefore, the total
response error is the summation of the nodal errors over the entire length of the data set

(epoch).

In most applications, the output of the network is processed by a differentiable

function, usually the logistic squashing function (sigmoid). The output of the sigmoid is




L
y=1f( 'le,xl +0)

. Typical Sigmoid Activation Function

08}

0s} 1

i(a)

04 ¢

02¢

<4 2

» o
~ k
»

Figure 1.  Single-layer perceptron with sigmoidal processing. The output of the node is
the weighted sum of the inputs, processed through the sigmoid function. The
sigmoid function is displayed in the lower prrt of the figure.

given by

f(z) = 17 (1)

When the network input is processed by this function, the response is the weighted
sum of the inputs, including the bias term 8, processed th:ough the sigmoid function. Thus

the resulting output is given by
Rn = fn(z w;z; + 0)
i=1

Figure 1 details the output of the sigmoid and gives a good picture of what the network

node should be viewed as.

To date, many other architectures have been proposed which extend the basic con-

cepts introduced by Rosenblatt. These new networks are called by various names: mul-




tilayer perceptrons, feedforward neural networks, backpropagation networks, recurrent
backpropagation, and so on. The term backpropagation refers to the way interconnection
weights are updated; that is by propagating backward from the output to the input, chang-
ing each connection weight in such 2 way as to minimize the total error. A recurrently
connected neural network is a backpropagation network that contains feedback loops from
previous states (timed inputs). The outputs that feedback are nsed as part of the next
sequentially timed input. So, the output at time ¢ + 1 is predictive based upon the current
input and the previous output. As with the input vector, the feedback connections each
have their own adaptable weights. These recurrent weights are changed just as before in
order to minimize the total error over the epoch length. Figure 2 shows a general layout
of a recurrent neural network. Notice that the current input vector at time ¢ is composed of
a bias (always equal to one), the external inputs, and the previous network’s output. This

is a convenient way to show how feedback is processed through the network.

2.3 Scope

Publications in the field of neural networks span a multi-disciplinary spectrum:
neurobiology, physics, psychology, medical science, mathematics, computer science, and
engineering. As such, it is difficult to accurately compile a thorough summary of where
neural network technology stands today. However, a broad sampling of current literature
centered on the topic of recurrent backpropagation neural networks yields a more focused

review,

The scope of this review wili forus on current literature detailing the improvements
in recurrent backpropagation neural network icchnology. Most of the improvements

presented are simply modified versions of previously published work.

2.4 Backpropagation through time (BPTT)

Much of the current rescarch has focused on the use of recurrent neural networks that

deai with time-varying iaput or output in nontrivial ways. Rumelhart describes a general




exter:sl outputs
YI1(t+1)  Y2(t+1)

hidden nodes
Y3(t+1) Yn(t+1)

Yit) Y2(t) Y3(t) Yn(t)

X1t X2 Xm(2) previous outputs
external inputs

Figure 2. A general recurrent neural network. The nuinber of external inputs, external
outputs and nodes are user-defined. The output ai time ¢ + 1 is predictive
based upon the current input and the previous output. The network is fully
interconnected by connection weights, adjusted using the gradient-descent
method. Feedback is introduced by using the network’s previous output as part
of the currert input.

framework for such a problem as a recurrent network which unfolds into a multiiayer
feedforward network that grows by one layer on each time step (18). The adjustments to
the network’s connection weights are designed to minimize a time-averaged measure of
the network’s overall learning error. This is reterved to as barkpropagation through time
(BPTT). Its strength lies in its generality, but a corresponding weakness is its growing
memory requirement when trained on arbitrarily long sequences. It is this method (BPTT)
which most researchers tend to modify. For example, Rohwer and Forrest (14) presented
a variation of the backpropagation feedforward training method (18). This method can
be indirectly applied to time-dependent problems in arbitrarily connected networks by
modeling a virtual network made from several copies of the originai, with one copy

for each time step. The adjustments to the network’s connection weights are designed




to minimize a time-averaged measure of the network’s overall learning error. In this
method, erross are assessed and handled simultaneous’v throughout the network rather
than propagated through it. It can be applied directly to arbitrarily connected networks,
provided that a certain criterion related to the training problen is zatisfied. When this
criterion is not met, a modification of the training problem can be found which properly

improves the stability of the network.

.3 Modified BPTT

There are many recurrent neural network models whos. architectures are modified
versions of previously pubashed work. For example, Pineda (14) has recently generalized
Rumelhart’s backpropagation learning algorithm for feedforward neural networks (18)
to recurrent neural networks. Pearlmutter (9) has further generalized this algorithm to
recurrent networks that produce time-dependent trajectories. The Pearlmutter architecture
requires mu~n more training time than that of the Rumelhart or Pineda algorithms. As
a result, Fang and Sejnowski (2) modified the Pearlmutter algorithm to improve both its
performance and speed. The Fang-Sejnowski article detailed the modifications on the
learning update ruie which allows adaptable independent learnizg rates for individual
parameters in the algorithm. This allows fast parameter estitation whiic zvoiding most

cases of catastrophic divergences.

2.6 Real-Time Recurrent Learning (RTRL)

One particularly interesting article describes a learning algorithm for training com-
pletely recurrent, continually updated networks to learn temporal tasks (23). This technique
emphasizcs using uniform starting configurations that contain no previously known infor-
mation about the temporal nature of the task. More precisely, it is a gradient-following
learning algorithm which tracks the total network error along a trajectory which miaimizes
this total error. Its main advantage is that it does not require a precisely defined training

interval. It operates while the system is running. A disadvantage is that it requires nonlo-




cal communication during training. This means it is computationally expensive. Yet, the
algorithm allows recurrently connected networks to learn complex tasks that require the
retention of information over fixed or indefinite time periods. This algorithm is referred
to as the real time recurrent leamning (RTRL) algorithm. It is this algorithm that this thesis
effort is based upon.

2.7 Subgrouped RTRL

Whereas RTRL has been shown to have great power and generality, it has the dis-
advantage of requiring a great deal of comiputation time (CPU intensive). To address this
problem, Zipser proposed an improved technique which reduces the amount of computa-
tion required by RTRL without changes in neiwork connectivity (24). The reduction in
computation time is a result of net vork subgrouping. The original network is divided into
subnets for the purpose of er.or propagation, leaving them undivided for activity propa-
gation. This means that during training, the network is subgrouped only when the error
is propagated backward through the network’s connection weights. During the normal
feedforward propagation portion, the network remains fully connected. A comparison of
this new method and the previous RTRL method showed the subgrouped RTRL algorithm
to be 10 times faster on learning to be a finite-state part of a Turing machine (24).

2.8 Summary

As technology improves, new and innovative algorithms are discovered which help
researchers and engineers alike in solving time-dependent problems. All of the algorithms
previously discussed possess the ability, if properly trained, to tackle or completely solve
many difficult temporal tasks. Several of these algorithms are simply modifications of the

backpropagation through time method, or the r22! Ume recurrent learning method.

Although great strides have been made in advancing recurrent neural network tech-
nology, further research is stili needed. Most of thcse algorithms are implemented on

digital machines. Because of this, routines can be constructed in code which cannot be

10




physically realizable. That is, they cannot be implemented in hardware configurations.
Therefore, further research is necessary to determine whether or not these recurrently con-
nected networks can be realized as physical elements, thus greatly increasing their speed
and utility.

11




III. Methodology

3.1 Introduction

Citing the work of several neural network researchers, Chapter 1I covered a subset
of the most recent research into recurrent artificial neural network algorithms. Specifically
noted were the real-time recurrent learning (RTRL) algorithm, and the subgrouped RTRL
algorithm. This thesis seeks to encode the RTRL algorithm, perform several modifications,

and use the resulting network as a reliable engine for function prediction problems.

This chapter covers the development, modifications, and testing of the RTRL al-
gorithm for function prediction applications at AFIT. The basics of the RTRL algorithm
along with the current modifications of this algorithm are described. In addition, the testing
procedures and training methods used on the algorithm are discussed. The chapter con-
cludes with a description of how the recurrent neural network was applied to two specific

problems.

3.2 RTRL Algorithm

The real-time recurrent learning algorithm (23) is a gradient-following algorithm for
completely recurrent networks running in continually sampled time. The architecture of
the network consists of a user specified number of input nodes, a unity input bias, and a user
specified number of "hidden nodes" and output nodes (see Figure 2). The output nodes
(or hidden nodes for that matter) were designed originally to process the nodal activation
using the sigmoid function (Eq 1). The nodal activation is defined as the weighted sum
of all the inputs to a particular processing node. Each output node is fully connected, by
weighted connections, to every other node in the network, including external inputs and
previous outputs. Once the output is computed, it is returned and used as a part of the new

network input.

12




The derivation of the RTRL algorithm is contained in the article by Williams and
Zipser (23). In this thesis, only the most important equations will be highlighted. The
basic network has n units (nodes) and m external inputs. Any or all of the network units
can be outputs. Let yx(¢) denote the output of the kth node at time ¢, and let z«(t) denote
the kth external input signal to the network at time ¢. Now define 2;(t) to be the composite
network input at time ¢. In other words, z;(t) is obtained by concatenating z(t) and y(t),

(0 = { zi(t) ffk el -
w(t) ifkeU

so that

where U denotes the set of indices k such that z; is the output of a unit in the network,
and wh:re I denotes the set of indices k such that z; is an external input. Note: the unity
bias term is assumed to be a part of the m inputs. With a fully interconnected network, the
weight matrix w;; becomes a single n x (m + n) matrix, with ¢ corresponding to a specific

node, and j corresponding to a specific input.

The out »ut of the kth unit as a function of the input vector and connection weights
(the nodal activation) is given by

et + 1) = fie (s(1)) 3)

where f;. is the unit’s processing function, and the nodal activation s,(t) is given by

sk(t) = Z wklz,(t). (4)

leyul

For this thesis, the unit’s processing function will be either sigmoidal (Eq 1), or a combi-
nation of linear and sigmoidal units. Notice in Eq 3 that the output of any unit y(¢ + 1)
is not influenced by the external input until time ¢t 4+ 1. This means that given the current
input value at time ¢, the network will compute (predict) the output for time ¢ + 1. This fact
is important when performing function prediction. In addition, it is important in knowing
how to set up the training and testing data sets so that the desired network output is located

13




at time ¢ + 1 as opposed to time ¢.

Since Eqs 3 and 4 specify the entire discrete-time dynamics of the network, the weight
update equation must be specified according to these dynamics. This is accomplished by
measuring the network performance over time, and then computing its gradient in weight
space, following the negative gradient to a minimum total error. For this derivation, the

error is defined as

di(t) - w(t) ifkeT

ex(t) = { _ (5)
otherwise

where T denotes the set of indices £ € U for which there exists a target value di(t) that

the output of the kth unit should match. Therefore, the total network error is defined as

Toralt) = Y 3" ex(t (6)

t “keU
It is the negative gradient of this total error that must be followed to a minimum value.

The weight update rule adjusts the weight matrix along a positive multiple of the
negative gradient of the total error. To achieve this weight update rule, an incremental
delta weight (weight change) value is required. This delta weight is initially defined as a
fixed multiple of the gradient of the total error with respect to the connection weights at
each time step. In other words,

aJ(t)
Aw(t) = Gy (M
where a is some fixed positive leaming rate. For this thesis, the learning rate will not be
fixed. This modification will be further described in the modification section to follow.

Therefore, following Williams and Zipser’s derivation for gradient descent, the
algorithm must compute the trajectory by

- 8_.]_(_Q - Z ek(t)gy"_(t) (8)

8w.-,- kel aw.-,-

14




where Qg‘ﬁ? is a measure of the sensitivity of the output at time ¢ to a small change in w;;.
It is assumed that the initial conditions, external inputs, and remaining weights are not
altered at all during this sensitivity measure. Thus the sensitivity of the network at some

future time is given by

Ayk(t +1)
Bw,-j

= filsi(t)] [Z wipk; + 5ikzj(t)} 9)

leU

forallk € U,7 € U,and j € U U I. The term é;; denotes the Kronecker delta function.
Thus, by defining the variable

Oye(t + 1)

k e
pi;(t+1) g

the network dynamics is governed by
it + 1) = filse()] LZU wpl; + 6ikzj(t)] (10)
where the initial conditions are defined as
pi(to) = 0.

For this thesis, when the output function is sigmoidal, the de~ sative of the network

processing function with respect to the activation is given by
Filsu(®)] = we(t + D[1 = ye(t + 1)]. (11)

When the output function is linear, the derivative of the network processing function with

respect to the activation is given by

frlsk(®) = 1. (12)

15




The RTRL algorithm is a gradient-following algorithm. This means that it follows
the gradient descent method for computing weight updates. However, because of it’s
continuous time nature, it only approximates following the true negative gradient of the
error curve. This approximation is done by incrementally updating the weights at each
time step rather than by the traditional batch update method, where the weight changes
are summed and then added to the existing weights at the end of each epoch. An epoch
is simply one complete pass through the entire data set. While the batch method follows
the true gradient of the total error, the RTRL technique is known to work well in practice.
The use of a small enough learning rate leads to a net weight update whose direction is a

close enough approximation to the true gradient.

3.3 Modifications

Several modifications have been added to the RTRL algorithm to better adapt it
to the function prediction task. First, the network output was modified to enable the
external output units to process as linear units rather than as sigmoidal units. The hidden
units remain as sigmoidal processors. Only the external output units were modified.
Although the original algorithm did not have linear outputs with sigmoidal hidden nodes,
this modification would greatly increase the network’s use in applications where the output
exceeds the range of 0 to 1. With a linear output, the network’s response can be read and
interpreted directly. In addition, linear outputs do not require the desired output vector to

be normalized, thus saving computation time.

The second modification to the standard RTRL algorithn: was to add a variable
learning rate to provide for an increased co.. .rgence of the total error. The learning rate
will be variable based upon the stability of the total error accumulated over an entire epoch.
If the ratio of the previous total error to the current total error is less than a desired constant
less than one, or if the difference between the previous total error and the current total error
is less than zero, then reduce the learning rate by a factor of two (arbitrary). Otherwise,

do not change the learning rate. If the difference between the previous total error and the

16




current total error is less than zero, this means that the total error is beginning to increase
or oscillate. By reducing the learning rate at this point, the total error will continue to
decrease until convergence. The ratio of the previous total error to the current total error
measures the incremental change in the total error in time. If this change is less than the
desired incremental change, the learning rate is reduced. The desired incremental change
for this thesis is 0.999.

To verify that the learning rate modification increased the network convergence, a
series of tests were performed to measure the average total error of the network with and
without the variable learning rate. The recurrent network was configured with 1 input, 1
sigmoidal output, and 1 hidden sigmoidal unit. The training data set contained a pseudo-
random number sequence 1024 vectors long. Chapter IV contains the results of these

tests.

3.4 Testing

The network was tested using several temporally encoded data sets. The first task
was to train the network to learn the exclusive OR (XOR) operation. Although XOR is not
inherently time dependent, the network will learn it if the output is delayed for a specified
amount of time. The next problem attempted was to teach the network to learn an internal
state problem (22:97-100). That is, the network must recognize that two particular events
have occurred in a prescribed order, regardiess of the number of the intervening events.
The network was then trained to predict the frequency response of a second order IIR
lowpass (Butterworth) filter. IIR is an acronym which means “Infinite Impulse Response”.
This was done by training the network on the impulse response of the filter, and tnen

testing the response of the network to various inputs.

3.4.1 Exclusive OR (XOR) Exclusive OR (XOR) is a disjoint region problem (see
Figure 3). This means that there are two disjoint regions in the decision space for each

class. The classes must be separated by at least two decision planes before an input value

17




can be correctly classified into one of the class regions.

Feature Space

. a2 o Y
pae DR "”\7} 24

M
N

-
X

Figure 3. The disjoint region, or exclusive OR, feature space. No single decision plane
can separate the regions by class.

Multilayer perceptrons trained with back propagation have demonstrated an ability
to learn this problem very well (13:53-61). The use of multiple layers is to allow the

formation of multiple decision planes within the feature space.

Since a recurrent neural network can be viewed as a multilayer feedforward neural
network which has been folded back onto itself in time (18), it should also be able to
solve the XOR problem just as well. However, some alterations to the data set need to be
considered. Namely, the desired output of the data needs to be delayed a specified length
of time in order to accommodate the predictive nature of the recurrent network. These
alterations were required because the XOR problem is not a good test of a recurrent neural
network. There is no time dependency within the XOR problem unless it is physically

manipulated to contain timed information.

Thus, the XOR problem was included in this thesis in order to identify how the

recurrent network performs when given a temporally encoded spatial problem.

18




The fully connected recurrent network was configured with 2 external inputs, 1
sigmoidal output, and 4 hidden sigmoidal units. The learning rate started at 4.0. Sigmoidal
units were chosen because the desired output values are 0 and 1. Initially, the data consisted
of a randomly generated set of 1’s and 0’s as input while the output was the XOR of the
input delayed by two time steps. Each data vector was considered a separate time sample.
The net trained on a randomly generated binarized XOR data file (that is, the values were
either O or 1). The number of training vectors was 1024, and the training concluded after
20 epochs. The decision threshold for correctness was 0.5; if the output was greater than
0.5, the output was considered a 1, and if the output was less than 0.5, the output was

considered a (.

After the network training was complete, the weights saved from the training run
were used as test weights. The network was tested using another binarized XOR data set
generated from a different random seed. This guarantees that the temporal presentation of
the XOR data set is randomly changed. The results of this test should show how well the
network weights generalized the XOR learning law.

Another separate training was performed to test the network’s ability to generalize
the complete XOR data set. That is, can the recurrent network learn more that just the
verticies of the XOR data set? To answer this question, the network was trained on an
analog XOR data set as opposed to the binarized XOR data set. The spatial distrubution of
the analog training data set is displayed in Figure 4. The network configuration contained
2 inputs, 1 sigmoidal output, and 5 hidden sigmoidal nodes. The network weights were
trained for 300 epochs through the 512 vector-length analog data set. The weights were
saved and used to test a 1024 vector-length analog data set. In addition, the two binarized
data sets were also tested using the above saved weights. If the network can generalize the
analog XOR data set in a true spatial sense, then it would be expected to perform perfectly

on the binarized XOR data sets. Chapter IV contains all the results and discussion of these

tests.

19




Spatial Distribution of XOR Data

1 443 T Y 184 T 3 50
:oo°°°o°°o ® o0 °es°°w°°o . o 9
g0 o5 o ' g0 %% © o0 % V4

09 4 @ o0 ®& %0 & o 880° © 6 o ° 8°°oQ°

. o°° 06 © 00 °¥ 5o [ o oo ooﬁ

% o0 gl C Fael %, 8% 9T 000
0.8 | 0% o @o® s8¢ °°°<>8 08 °0 % 2
. (8 &  0%» 8 0% o o P 6 0o R° 00 £ %o
SRR T WA P S5 S AN
o ¢ °
07§ T g oo Faee g% 5 ol o To (b
L o8 oo 8: 0 080 | R Poa® G T ° "0,
B 4 ° o 009 ° 0
06F 0,0 0° 093@33 oglo® °, o‘b‘g%°g° 9058.1
— ¢ &L 200 o %o 21060 %600 & M
P o & 8 O 0 o f 0
5 °e e @° "0 g0 P 0 P Roo °F o7, o
= 0.5 P 30 ® o Y 4 o oY &
= 3% © 0 40 0 o $go ® %&8 O ®0, oo
—t o q§ 00 O ) o @ o "o e ©
o 00 0° o o g0 %
04 F © % °o°‘ °°°°0 o 8 080 40 o %o
[+ o <
%o ® o o o °°§°8° @ o °° °o °
L © o ©06 °9 o8~ © o ,°
03 % ° { %0 0 9° o £° 5 ol
b Ca. .0 ¢ o ¢ 8 ° %Oo [+4 ooog
o %" % 4 .0 o 6’0 o ° ® . p:
0.2 %00%000030 o P I o{f& °

“ P °o°gso ®o 8,2 0¥ o o © %o
$ 0% & S0 o o0 o oo 5, Jo5 W o @°
o 00,022 o [eg° 85,8

0.1 6 o o‘8°o3 0 600 L Ooooso (4] L 4 PR
% o° 2% :oo%% ®o o . %00 o Oo% o
0 $ O & 108 ) o o 2 9o 1%

0 01 02 03 04 05 06 07 08 09 1
Input 2

Figure 4. Pseudo-random spatial distribution of the XOR training set used to demonstrate
the recurrent network’s generalization ability.

20




3.4.2 Internal State Learning to represent internal state is considered a simple
sequential recognition task for humans. However for traditional feedforward neural net-
works, this is a nearly impossible task. This test should demonstrate the power of a simple

recurrent network on timed sequential signals.

As demonstrated by Williams and Zipser (22:97--100), let there be four inputs to the
network, each line corresponding to the letters a b ¢ and d respectively. The a and b lines
are the actual input decision lines and the ¢ and d lines serve as distractor lines only. On
any given time step, a randomly chosen input line is given a value of 1, with all others
given the value of 0. The desired output for the network is 1 on the time step immediately

following the first occurrence of b following an a. Otherwise, the desired output is 0.

For this task, the network consists of 4 external inputs, 1 sigmoidal output, 1
sigmoidal hidden node, and an initial learning rate of 5.0. The data set contained 95 time
samples (vectors). The initial weight values were randomly generated from the interval
[-1,1]. Figure 5 shows the recurrent network configuration used for training on the internal
state problem. Because the network algorithm has a variable learning rate, the initial value
of the learning rate is used to get the network started on the "right track”. For this test, if
the learning rate were less than 5.0, the network would still converge but at a slower rate.
If the learning rate were greater than 5.0, the network total error would initially converge
rapidly but would then rapidly diverge. The algorithm would then lower the learning rate

to half of its original value and continue until it converges.

The network was trained and tested on two data sets which contain randomly gen-
erated input vectors. However, the time separation between the occurrence of b following
a is different in both data files. This means that the occurrence of the specified state
transition differs between the two data sets. For the training set, there were 27 occurrences
of b while only 10 of these b’s followed consecutively after an a. The time separation
between ab pairs for the training set is illustrated in Table 1. For the test set, there were
15 occurrences of b while only 8 of these b’s followed consecutively after an a. The time

separation between ab pairs for the test set is illustrated in Table 2. Therefore a correct

21




output

b
P4

nodel node2
feedback feedback

Figure 5. Recurrent network configuration for learning to represent internal state. For
this task, the network consists of 4 external inputs, labeled q, b, ¢, and d, 1
output, 2 sigmoidal nodes, and an initial learning rate of 5.0. The feedback
nodes are the previous (t-1) values of both nodes. The entire bottom row of
nodes represents the input vector z(t).

prediction of the occurrence of the transition in the test set will demonstrate the network’s
ability to learn the internal state problem presented. The output of the network and the
results of this test are contained in Chapter IV.

3.4.3 Second Order IIR Lowpass Filter This test demonstrates the network’s
generalization ability in simulating a linear system. A second order lowpass Butterworth
filter was used as the linear system for this test. The filter has a normalized cutoff frequency

of 0.1 and is described by the following difference equation:
y[t] = 0.0676(z[t] + 2zt — 1] + z[t - 2]) + 1.1422yft — 1] — 0.4124y[t —2] (13)

A data set was generated, using this difference equation, to train the network to learn the
frequency response of the filter. The input to the network is the sampled test signal, and
the desired output of the network is the output of the difference equation offset by one time

22




Table 1. The time separation for ab pairs in the training data set. The separation is the
number of time steps between the occurrence of an a and the first occurrence of
a b in the training set. The occurrence list shows how many of the respective
separations exist within the data set.

| ab pair separation | Occurrence ||

1 2
2 3
4 1
5 1
6 1
7 1
18 1
total = 10

Table 2. The time separation f. ab pairs in the test data set. The separation is the number
of time steps between the occurrence of an a and the first occurrence of a b in
the test set. The occurrence list shows how many of the respective separations
exist within the data set.

| ab pair separation | Occurrence ||

1 3

2 i

7 1

9 1

22 1

29 1
total =8

23




step (t + 1). The offset is to accommodate the predictive nature of the recurrent network.
Since the input does not affect the output until time ¢ + 1, the desired output value in the
data set must be located at wiat ¢ + 1 position. The data set contained 128 data points.
Appendix C contains the C code (make_data.c) used to generate this data set.

When the input to a system is a single delta function, the output is called the impulse
response of the system. Because the Butterworth filter is a linear system, a single deita
function (impulse) was used as the input in order to obtain the system’s impulse response. A
linear system is completely characterized by its impulse response (3:143-144). This means
that if the linear system’s impulse response is known, the response to a complicated input
can be determined by decomposing the complicated input into a superposition of a large
number of appropriately weighted and positioned delta functions. The overall response is
then determined by summing the responses to all the individual delta functions. Therefore,
if the recurrent neural network is trained on the impulse response of the filter, the network’s
response should completely characterize this linear system, regardless of the complexity

of the input signal.

The network consisted of 1 external input, 1 output, and i sigmoidal hidden node.
For this test, the output nc.\- was defined as a linear function. Figure 6 shows the network

configuration for the tests.

The network was trained on the impulse response of the filter. This means that the
desired oucput of the network was the actual output of the Butterworth filter when the
input was a single impulse. The input to the network was 4 single impulse. After training,
the following input signals were used to test the network's ability to simulate the filter: a
unit step, two different sinusoids, and a pseudo-random signal (to simulate white noise).

Again, for this test, the network was trained only on the impulse response of the filter.

After the input signal was applied to the network, the output was processed through
an FFT (Fast Fourier Transform) algorithm, and the network frequency spectrum was
compared to the desired frequency response of the filter. More specifically, the frequency
spectrum of the output of the difference equation was compared with the frequency spec-

24




nodel node2
feedback feedback

input
signal

Figure 6. Recurrent network configuration for learning to simulate the frequency re-
sponse of a linear system. For this task, the network consisted of 1 external
input (the input signal to the filter), 1 linear output (the "filtered" input), 1
sigmoidal hidden urit, and a variable learning rate (initially 0.02 for a linear
output unit).

trum of the output of the recurrent network. The comparison was performed using all four

input signals separately. The results of these tests are highlighted in Chapter IV,

3.5 Applications

If this real-time recurrent learning network can simulate the response of a linear
system, the next straightforward application would be to test the predictive ability of the
network on real-time problems. Two problems of particular interest are described as

follows: predicting 3-D head position in time, and voice data reconstruction.

3.5.1 Predicting 3-D Head Position in Time Given the x, y, and z coordinates of
a pilot’s head in Euclidean space, the recurrent network should be able to predict what the
future position of the pilot’s head will be based upon the pilot’s previous head position.

25




For this application, the data set (provided by the Aeronautical Systems Division, Wright-
Patterson AFB) contained raw position coordinates as the input vector, and the actual
position coordinates for where the head position was in time as the desired output vector.
These position vectors were divided into separate coordinate positions. That is, the input
and desired output for the x-axis was extracted into a separate data set, and likewise for

the y-axis and z-axis data.

The network configuration consisted of 1 input (the current head position at time ?),
1 sigmoidal output (the predictive head position at time ¢ 4 7, where 7 is some arbitrary
time), and one sigmoidal hidden urit. The desired output in the data set was offset by 2
time steps. This means that for a given input position, the desired output position is the
actual position either 2 time steps in the future. There were 8997 position samples in the
data set. The network was trained on the first 1000 samples of the data set for 400 epochs
with an initial learning rate of 3.0. Following training, the network weights were used to
test the remaining 7997 data points to see how well the recurrent network could predict
the respective coordinate position.

The training results are then compared to the results of a statistical prediction algo-
rithm which theoretically produces the best linear approximation. The statistical prediction
algorithm is fully described in Appendix E. This comparison is expected to show how the
recurrent network performs with respect to the best linear prediction. Chapter IV contains

all the results of this application of the recurrent network.

3.5.2 Voice Data Reconstruction For the task of voice data reconstruction, the
recurrent network was required to learn the difference between fricative (noisy speech)
and voiced (non-noisy) speech samples. More precisely, given a select set of input features
which should uniquely describe a sampled portion of speech, the recurrent network was
to classify whether that portion of speech was fricative (class 1) or voiced (class 0). If the
sampled portion of speech was classified as a fricative, noise was added to that portion of

the signal on reconstruction, whereas, if the sampled portion was classified as voiced, no

26




noise was added during reconstruction. Thus the reconstructed speech signal would regain

most of the high frequency content it lost before transmission (20).

The data set for this application consisted of four features computed from a variable
width sample of speech. The first feature was the total energy contained in the sample. The
second feature was the number of zero-crossings that occurred during the sample period
divided by the sample window length. The third feature was the number of slope changes
divided by the sample window length. And the fourth feature was the total energy below
500 hertz within the sample window. The desired output was a classification based upon

whether the input features described a noisy portion of speech or not.

Previous attempts at learning the data set used a feedforward neural network trained
with backpropagation. This network contained 4 inputs, 4 hidden sigmoidal nodes, and
a 2 class output. After training, the network weights were saved and used as previously
described in the reconstruction process to classify noisy or non-noisy data. Training
accuracy was 87% . However, this feedforward network would not make the proper
decisions regarding the noise classification of the data when used in the reconstruction
program. Therefore, another network architecture was sought out to attempt to solve the

problem: the recurrent network.

The recurrent network configuration consisted of 4 inputs, 1 sigmoidal output, and
no hidden units. The network was trained for 400 epochs on a data set containing 1500 data
samples. The learning rate was initialized to 0.02. If the learning rate were greater than
0.02, the total error for a single epoch would be exceedingly large, causing the network to
catastrophically diverge.

Following training, the network weights were saved and used in the reconstruction
program. Within the reconstruction program, the weights were used with the transmitted
signal to reconstruct the speech pattern, adding noise where necded based upon the net-
work’s classification decision. Chapter IV contains all the results of this application of the

recurrent network.

27




3.6 Summary

The methodology for developing and testing the RTRL algorithm has been described.
The dynamics of the RTRL algorithm were described and the modifications to the original
algorithm were outlined. Next, the testing methodology used in this thesis was described.
The results of these tests show how robust the recurrent network is to learning temporal
XOR, representing internal state, and simulating a linear system. The predictive ability of
the recurrent network was then applied to two problems: head position tracking, and voice
data reconstruction. Chapter IV contains the results and a discussion of these tests.

28




IV. Results and Discussion

Chapter III covered details of the development, modification, and testing of the
RTRL algorithm as a viable part of a function prediction scheme, This chapter contains
the results of these tests, including a section on the recurrent network’s application to two
function prediction problems: 3-d head position tracking, and voice data reconstruction.

The results are presented in the same order as they appeared in Chapter III.

4.1 Modifications

To verify that the learning rate modification increased the network convergence, a
series of tests were performed to measure the average total error of the network with and
without the variable learning rate. The recurrent network was configured with 1 input, 1
sigmoidal output, and 1 hidden sigmoidal unit. The training data set contained a pseudo-
random number sequence 1024 vectors long. The recurrent network was trained on this
data set for 500 epochs. The results displayed do not indicate that the network learned
to predict the pseudo-random sequence. Rather, the plots simply illustrate the difference

between using the variable learning rate modification and a fixed learning rate.

Figure 7a) displays the network training error when the learning rate is fixed at 4.0.
The total error decreases to a point and then diverges and becomes unstable. This implies
that the learning rate is not small enough to account for small weight variations required
within the network. Figure 7b) shows the exact same training as before, except with a
variable learning rate, initially set at 4.0. The network continued to converge throughout
the 500 epochs. The sharp drops in the error plot show when a change in the learning rate
occurred. The final learning rate value at the end of the training was 0.5. Using this final
value as the starting value for a fixed learning rate test, the network was trained again on
the same data <=t. Figure 7c) displays the results of this last test. Note that the network
continues to smoothly converge throughout the training run. Yet at the last epoch, the

total error was still not as low as that for the variable learning rate. This shows that a

29




" Fixed Learning Rate Results

alpha =40 —
105 |
-1
Q
10
§ 95
9 L
8.5 - 1 e i A, L A A A
0 50 100 150 200 250 300 350 400 450 500
TIME (arbitrary units)
105 Variable Learning Rate Results
alpha initially 40 —
10 |
2 95t W
9
3 b)
B us) .
8 b l\ 4
7.5 " A - L i L ke N .l
0 50 100 150 200 250 300 350 400 450 500
TIME (arbitrary units)
89 Fixed Leaming Rate Results
aipha=0.5 —
88 .
8.7}
o
% 86
85+
2 c)
§ 84 | ]
83 \ ]
82 F \

8.1 '
0 50 100 150 200 250 300 350 400 450 500
TIME (arbitrary units)

Figure 7. Results of using a variable learning rate. The total error versus epoch number
shows training using a) a fixed learning rate, b) a variable learning rate, and ¢)
a lower fixed learning rate.

30




large learinig rate initially, followed by a successively decreasing learning rate converges
rapidly when possible, and slowly when necessary. Therefore, the variable learning rate
modification has shown to be successful in increasing the network convergence to an

overall lower total error.

4.2 Exclusive OR

The first problem used to test the recurrent networks ability to learn was the classic
XOR problem. The recurrent network was initially trained on the binarized data set
described in the Chapter III. The learning accuracy for this binarized training data set
was 100% after 20 epochs, with a total squared error on the final epoch of 0.032. The
decision threshold for correctness was 0.5; if the output was greater than 0.5, the output
was considered a 1, and if the output was less than 0.5, the output was considered a 0.
However, this accuracy was meaningless unless the networks generalization ability was

tested on a separate data set.

For this test, the weights saved from the training run were used to test a separate
binarized data set generated using a different randomization seed. During the test, the
weights remained fixed, and the network processes the test data only once. In this test run,
there were zero prediction errors. Thus, the generalization accuracy of the network was
100% when tested on the separate binarized test set. In fact, there were zero errors for four

other binarized test sets, all of which were generated from separate seeds.

However, a separate test was performed to see how the network learns when trained
on an analog data set. After 300 training epochs (512 input vectors) on the analog data
set, the training accuracy was 98.1% correct, based on a decision threshold equal to 0.5.
The network weights were saved and used to test a 1024 vector-length test set containing
randomly generated analog values. After testing, the prediction accuracy was 93.1%
correct. Then two binarized data sets were tested using the weights computed from the
training run on the analog XOR data set. The results of the binarized data tests were as

follows: for the first binarized data set, the testing accuracy was 91.3% correct, and for

31




the second binarized data set, the testing accuracy was 90.8% correct.

These results were not really expected. It was expected that the network trained
on the analog XOR data set would be able to exactly learn the corner values (vertices).
However, the above results show that almost 10% of the data points in the binarized test
set were incorrectly classified. This implies that the network did not learn the true spatial
XOR problem. Rather, it learned the spatio-temporal XOR problem. In other words, the

network learned the spatial XOR problem as presented in a temporal sequence.

To further demonstrate that the network did not learn the true XOR problem, Figure
8 contains a spatial distribution plot of the analog XOR data set which identifies the points
which were classified correctly or incorrectly following testing. The diamonds represent
the points within XOR space which the network incorrectly classified. Notice how evenly
distributed the misclassified points are throughout the XOR regions. There were bad
decisions made in every region, even points very close to the vertices (corners). If the
recurrent network truly learned the spatial XOR problem, the bad decisions would be
expected to lie close to the intersecting lines (cross-hairs) between the respective XOR

regions.

Two more analog XOR data sets were created to see if the spatial decision regions
change as the temporal presentation of the analog XOR data changes. These new analog
XOR sets are identical except that the input sequence of XOR data is changed. The
first set will be referred to as test case 1, and the other as test case 2. Using the same
weights generated from training on the previously mentioned analog training set, the
testing accuracy for test case 1 was 90.1% correct, and for test case 2 was 90.5% correct.
Figure 9a) displays the spatial dicisions for this test case 1 and Figure 9b) displays the
spatial dicisions for this test case 2. This time, notice the difference in spatial location of
the misclassified points in Figure 9a)to the spatial location of the misclassified points in
Figure 9b). Since the temporal presentation of the data set changed, the decisions made

by the network changed also.

Therefore, it is suggested that the actual decision region the recurrent network uses

32




XOR Spatial Decisions

0.9 ¥

 + +
0'8 t#:,!- + 4t £ +*+¢ + o+ i +<.>: +

+
o,
0.7 F g o+ & =¥ F 00 el

06 F .+

INPUT 1
o
th
r

+
+
¥
Oy
z
+

+
e,

++++
10 4

W

+
3
4t
b T e
¢

+*
s
++
+.
I -i.++

+°+

+++‘h~
4+

»
+
b+ 4+

0! . LT T Lt o+ L LY o

0 01 02 03 04 05 06 07 08 09
INPUT 2

—

Figure 8. XOR spatial distribution decision plot. The diamonds represent the points in
XOR space that the network incorrectly classified. There were bad decisions
made in every region, even for points very close to the vertices (corners). No
clear spatial decision region can be found. All of the incorrect decisions were
expected to be located near the cross-hair lines.

33




XOR Spatial Distribution
! T, e T e oo (testcase 1)
al Ll
07} oo AU U
~ 0.6 | . . . . Y
55l - L o]
Eo.4 [ ° e o e
03+ ° e e . ¢ -
02} L. . ]
o1 } 5 .o .
0 Lo TR &5 . A o
0 01 02 03 04 05 06 07 08 09 1
INPUT 2
a)
XOR Spatial Distribution
1 . ' ' ¢ ) ' T e U0 ol(test case 2)
09 } ¢, . oo © 1 accuracy
o8t . o | 90.5%
07 f* . R
-~ 06+, . . ‘:o i
=04 R A
03 | cTe L, T
02 r R \ -
0.1} . oo o
0 L YA e S . o
0 01 02 03 04 05 06 07 08 09 1
INPUT 2
b)
Figure 9. (a) XOR spatial distribution decision plot for test case 1. (b) XOR spatial

distribution decision plot for test case 2. The diamonds represent the points in
XOR space that the network incorrectly classified.

34




is described by a nonlinear spatio-temporal mapping. Previous research suggests that the
recurrent network learns the XOR problem by organizing itself into an appropriately lay-
ered feedforward network (22:96-97). However, if this were truly the case, the recurrent
network would simply create a clearly discernable spatial decision region as was previ-
ously expected. But as the previous results have shown, no clear spatial decision region
was formed. The recurrent network’s XOR decision was made based on the temporal

presentation of the spatial information contained in the data set.

4.3 Internal State

The network’s ability to represent internal state is outlined in the following plots. In
Figure 10, the output of the network is compared to the desired training output in time.
As outlined in Chapter III, the training data set consisted of a randomly generated input
line (a, b, c, or d), one of which set equal to 1 and the rest set equal to 0. The desired
output is 1 on the time step immediately following the first occurrence of a b following a,
and O otherwise. Figure 10 shows how the trained network was able to predict the desired
output after only 20 epochs through a 95 vector data set. These weights were saved and

used to test the network’s generalization ability on a separate data set.

Figure 11 details how well the network can generalize from the training data set to
an application on a specific test data set. These results show a 100% accuracy in predicting
the occurrence of a state transition of as much as 29 time steps apart. Reference Tables
1 and 2 in Chapter III for the occurrence of ab pair and the respective time separations.
These results imply a specific capacity to remember. Yet these results also imply that the
network will identify the first occurrence of a b line transition no matter how long ago the

first a transition occurred.

In analogy, the network configures to be a set-reset state device (flip-flop). Reference
Table 3 for the following discussion. The occurrence of an a sets the state of the hidden
unit high while the occurrence of a b during a low state resets the state of the hidden unit to

low. If the previous state was high, the output will be high. But if the previous state was

35




Internal State Training Results

14 T T — v
desired response  ©
12t network response  +

’ decision threshold ----

1 Fe o o o o o o o ° ® -
= + . . + + * + |
E 0.8 | .o
=
3 06 | .

04 | .
0.2 :_ o * + * M b

O . + + * ++++H- ’

0 20 40 60 80 100
TIME (arbitrary units)

Figure 10. Desired and actual output of the recurrent network after training, The decision
threshold for correctness was 0.5; if the output was greater than 0.5, the output
was a 1, and if the output was less than 0.5, the output was 0. The separation
of outputs greater than 0.5 represents the separation time between when an a
occurred and the first b occurred. Training accuracy was 100%.




Internal State Testing Results

1.4 ] , : |
desired response ¢
12 | network response  +
. desision threshold ----
1 o ¢ L] o Py °o o o |
* * *+ + +
5 08 | * |
% 06| |
04 r |
02+t )
0 bo-onen b ioomts sntinebssistasid-ow- s SIS LSS o
0 20 40 60 80 100
TIME (arbitrary units)

Figure 11. Internal state test output of the recurrent network after training 20 epochs.
The decision threshold for correctness was 0.5. The separation of outputs
greater than 0.5 represents the separation time between when an a occurred
and the first b occurred. Testing accuracy was 100%.

37




low and a b occurs, the output will remain low because the hidden unit has not been set
low. When the previous output was high, the recurrent weights for node one will always

reduce this high to a low, thus resetting the output until the next state transition occurs.

Table 3. Training weights for the internal state problem. The first row are weights for
the output node and the second row are ‘weights for the hidden node.

[ J[oiaswt ] awt | dwt | cwt | dwt [recurwt1 [ recur wt2 ||

output node || -6.636 | -1.656 | 3.749 | -2.582-2.209 | -2.877 5.480
hidden node | -1.565 | 4.242 | -4.055 | -1.535 | -0.609 | -3.461 5.860

4.4 Second-Order IIR Lowpass Filter Simulation

As described in Chapter IlI, the recurrent network was trained to simulate second-
order IIR lowpass filter (Butterworth), The following input signals were used to test the
network’s ability to accurately simulate the filter’s response: a unit step, a cosine wave,
an inverted sine wave, and a pseudo-random number sequence (to simulate white noise).

Figure 12 shows the desired frequency response of the Butterwcrth filter.

4.4.1 Impulse Response The network was trained on the impulse response of
the filter. This was accomplished by generating a data set using the difference equation
displayed in Eq 13. The input to the generator was an impulse §(¢), where §(t) equals 1 for
t =0and 6(t) equals O otherwise. The output of the generator was used as the desired output
of the network. The desired cuiput of the network was simply the output of the generator
delayed by one time step. In theory, the impulse response of a linear system completely
describes the system. Therefore, by training the network on the impulse response of the
system, the network should be expected to accurately simulate the response of a linear

system to any other input.

Figure 13 contains the results of the network after training for 600 epochs on the

desired impulse response of the filter. The output of the network was processed through a

38




Butterworth Filter Frequency Response

l LI ¥ ¥ J ¥

08 f

06

04

AMPLITUDE

0 L 1 1 - —
0 20 40 60 80 100 120
NORMALIZED FREQUENCY X 128

Figure 12. Desired frequency response of the Butterworth filter.

fast Fourier transform (FFT) algorithm and the results plotted in Figure 14. The weights
generated by the network after this training run were saved and used to test the network’s

response to other input signals.

Based on the results in Figure 14, the recurrent network could not completely
memorize the impulse response of the filter, and thus, a complete filtering of higher
frequency components could not be learned. This is shown by the non-zero response in the
region where no frequency components should be. However, the amplitude of the higher
order frequency components will still be greatly attenuated. This does not imply that the
network did not learn to generalize the response of the Butterworth filter. The real test is

to apply the weights generated from this training to other input signals and compare the
results to the expected filter response.

4.4.2 Unit Step Response Using the weights generated by the network after it was

trained on the Butterworth filter’s impulse response, the network was tested using a unit

39

—_ - =d



Comparison of Butterworth Filter Output 10 Network Output

0.3 —_ i . b
desired impulse response ——
025 r network impulse response --~-
02}
%3]
é 015 |
=
5 0.1H
0.05 H
\\
0 I Vot R
-0.05 —l— 1 ) N N R
0 20 40 60 80 100 120 140
TIME (arbitrary)

Figure 13. Comparison of the network's impulse response to that of the desired impulse
response of the Butterworth filter after 600 training epochs. The impulse
response completely characterizes the filter.

12 Impulse Frequency Response of Filter and Network

desired frequency response ——
network frequency spectrum ~==-

AMPLITUDE

0 20 40 60 80 100 120
NORMALIZED FREQUENCY x 128

Figure 14. Comparison of the network’s impulse frequency spectrum to that of the desired
frequency response of the Butterworth filter after 600 training epochs. Since
the recurrent network could not completely memorize the impulse response
of the filter, a complete filtering of higher frequency components could not be
learned. However, the amplitude of the highcr order frequency components
will be greatly attenuated.

40




step as the input signal. A unit step is defined as equal to 1 for ¢ > 0 and equal to 0
otherwise. The network response to the step input is shown in Figure 15, and Figure 16

shows the frequency domain representation to the same step input.

The results plotted in Figure 15 show how well the recurrent network’s response
matched the expected response of the Butterworth filter. The one big difference is the
lack of an overshoot in the network’s response. This is a feature common to a heavily
overdamped system, where as the Butterworth filter’s response only shows slight damping.
Nevertheless, the network still showed an excellent ability to simulate the step response
of the filter. In the frequency domain results shown in Figure 16, small differences can
be noted throughout the plot. However, since the plot is log-linear, these differences are

amplified.

4.4.3 Sinusoidal Response The network’s response was further tested by using
two different sinusoidal waves as inputs to the system. The first sinusoid was a cosine
wave that completes 2 cycles within 128 sample points. The response of the trained
network to this cosine wave is shown in Figure 17. Throughout the plot of the response,

the network response very closely predicted the expected response of the Butterworth filter.

In the frequency domain, it is apparent that this cosine wave was completely within
the passband of the filter. Figure 18 displays the actual network spectral response compared
to the expected Butterworth spectral response. As with the unit step response, the cosine
frequency response of the network so closely matched the cosine frequency response of

the filter that no significant differences can be noted.

The second sinusoid used to test the recurrent network’s ability to simulate the
response of the Butterworth filter was an inverted sine wave that completes 4 cycles within
128 sample points. Figure 19 displays the response of the trained network compared with
the expected Butterworth filter response. It illustrates how closely the network response
predicted the expected response of the Butterworth filter. Figure 2C simply shows how
well the network learned the response of the Butterworth filter.

41




Unit Step Response Comparison

l~2 Ll LI LS ¥
desired step response ~——
) network step response —---
P,-
[}
[}
|7
@ 08 i
2 .=
06 ||t 1
& :
2 i
04 h ]
i
I
u
0.2 Hi 1
)
]
: 2 P S N

0 2 1 '
0 20 40 60 8 100 120 140
TIME (arbitrary)

Figure 15. Comparison of the recurrent network’s response to a unit step input with the
Butterworth filter’s response to a unit step input.

Unit Step Frequency Response Comparison

1 T
desired response ——
network response ----
‘é 0.1
2
%
0.01 }
0.001 . . —- . .
0 20 40 60 80 100 120
NORMALIZED FREQUENCY X 128

Figure 16. Comparison of the recurrent network’s spectral response to a unit step input
with the Butterworth filter’s spectral response to a unit step input. The plot is

log-linear.

42




Filter and Network Cosine Response Comparison

1.5 T T T y T

desired cosine response ——
network cosine response ----

AMPLITUDE

0 20 40 60 8 100 120 140
TIME (arbitrary)

Figure 17. Comparison of the recurrent network’s response to a cosine wave input with
the Butterworth filter’s response to a cosine wave input.

Cosine Frequency Response Comparison

100 Y Y — T -
desired response ——
network response ----
E 10 §
:
0.1 A S 1 [} i

0 20 40 60 80 100 120
NORMALIZED FREQUENCY X 128

Figure 18. Comparison of the recurrent network’s spectral response to a cosine wave
input with the Butterworth filter’s spectral response to a cosine wave input.
The plot is log-linear.

43




Network Test Results For Inverted Sine Wave Input

105 L L LS ¥

desired response ——
network response ----

AMPLITUDE

_1‘5 A 1 A 1 i
0 20 40 60 80 100 120 140
TIME (arbitrary)

Figure 19. Comparison of the recurrent network’s response to an inverted sine wave
input with the Butterworth filter’s response to an inverted sine wave input.

Network Frequency Response For Inverted Sine Wave Input

T Y

desired response ——
network response ~--+

10 ¢ 7

AMPLITUDE

0.1 : . : : :

0 20 40 60 80 100 120
NORMALIZED FREQUENCY X 128

Figure 20. Comparison of the recurrent network’s frequency response to an inverted sine
wave input with the Butterworth filter’s frequency response to an inverted
sine wave input.




4.4.4 Pseudo-Random Number Sequence Response The last test of the recurrent
network’s ability to simulate the response of a Butterworth filter was to apply a broadband,
noisy signal to the input of the network. The noisy signal was approximated by a pseudo-
random number sequence in the range [-1,1]. Figure 21 shows the results of the network’s
response to a noisy input signal compared to the expected response of the Butterworth
filter to the same noisy signal. Although the network response does not exactly follow
the expected response, it does follow the expected response close enough to say that the
network has indeed learned to simulate the response of the Butterworth filter for a noisy

input signal.

In the frequency domain plot displayed in Figure 22, it is clear to see how the
frequency components in the cutoff region of the filter have been attenuated when compared
to the amplitude of the frequency components in the filter’s passband. As identified earlier
in the training of the impulse response, the recurrent network did not completely memorize
the impulse response of the Butterworth filter. Thus, those frequency components falling

outside the filter’s cutoff region will only be attenuated and not completely cutoff.

4.5 Predicting 3-D Head Position in Time

The recurrent network configuration consisted of 1 input (the current head position
at time t), 1 sigmoidal output (the predictive head position at time ¢ 4 7, where 7 is some
arbitrary time based on the sampling rate of the system), and 1 sigmoidal hidden unit. The
desired output in the data set was offset by 7 = 2 time steps. This means that for a given
input position, the desired output position is the actual position displaced 2 time steps in
the future. There were 8997 position samples in the data set. The network was trained
on the first 1000 data points for 400 epochs with an initial learning rate of 3.0. Figure
23 illustrates how close the recurrent network predicted the head’s y-position for 7 = 2.

Only the y-position was displayed because the x- and z-position plots were both equally

as accurate as the y-position plot.

Notice how the network prediction silghtly lags behind the actual y-position. This

45




. Network Test Results For a Random Input (Noise)
desired response ——
08 r network response ~---

0.6
04
0.2

AMPLITUDE
=)

0.2
-0.4
06 | ;
08} ;

_1 i i L )

0 20 40 60 80 100 120 140
TIME (arbitrary)

Figure 21. The results of the recurrent network’s response to a noisy input signal com-
pared to the expected response of the Butterworth filter to the same noisy

signal.
Network Test Results For a Random Input (Noise)
desired response —t—
35 H network response -~} H
30 H H
g
5 x
=
Z k L1
{]
1
1 &)
(14
Y
P I faq ! £
\ YWt A W ‘./n\_.

60 80 100 120
NORMALIZED FREQUENCY X 128

Figure 22. The results of the recurrent network’s frequency response to a noisy input

signal compared to the expected spectral response of the Butterworth filter to
the same noisy signal.

46




Network Training Results For Head Y-Position

038

0.7
0.6
0.5

04
0.3

T

Y-POSITION

0.2

e
[
H

etwork prediction ----

LI

actual position ——

error ----

Figure 23. Predicting head position training results. The recurrent network trained for
400 epochs on 1000 data points. Only a portion of the results are displayed.
The network output was trained to predict the value of the input function two
time steps in the future. This plot is a comparison of the network output

520

540

560 580 600
TIME (arbitrary)

y(t + 2) to the actual y-position at time ¢ + 2.

47




indicates that the network did not learn to accurately predict the pilot’s head position in

time. Portions of the networks prediction are very close to the actual values, but this is not

consistant throughout the data set.

Comparison of Network Error to the Statistical Predictior Error

0.03 : r ' —
4 network error ——
0.02 | ‘ I\ statistical prediction error ---- _
Aobfs .
A A i
oot Wk Mk A a1 i 1
! AU A ’ iy o oy !
| \ I g !
o ot [0 IR | S 1 L5 | VORI & % '.l'l]'i
@) ! RNRNEHRE
% R
|
@ -0.01 \ i ;
\ |
x :
-0.02 F \I‘\ ,‘ .
Voo
\ J’l‘ ]
‘0.03 8 \"\II ‘”IIV o
\i
¥
_0.04 1 1 1 1
500 520 540 560 580 600

TIME (arbitrary)

Figure 24. This plot is a comparison of the recurrent network’s error e(t) to the statistical
prediction error.

So, how well does the network compare to the best linear prediction? A statistical
prediction algorithm was used for this comparison. The same data set used to train the
network was used in the statistical prediction algorithm. The results of this comparison
(shown in Figure 24) show that the network only slightly outperforms the statistical
predictor. The total mean squared error of the network was 0.000174 while the total
mean squared error of the statistical predictor was 0.000220. However, in terms of

prediction, portions of the network’s output were very close to the actual signal whereas

48




the statistical prediction consistantly lagged behind the actual signal. On this point, the

network performance was better.

Thus, from these results, the recurrent network shows to be a more robust function
predictor than the best linear predictor. This is true for three reasons. One, the network
does not require that the entire temporal sequence be known while the statistical predictor
does. Two, the network does accurately predict portions of the pilot’s head position in time
while the statistical predictor always lags. Three, the network can be trained in real-time
and updated as necessary to accommodate unexpected future events whereas the statistical

predictor can not.

4.6 Voice Data Reconstruction

For the task of voice data reconstruction, the recurrent network was required to learn
the difference between a fricative (noisy) and a voiced (non-noisy) portion of speech. The
recurrent network configuration consisted of 4 inputs, 1 sigmoidal output, and no hidden
units. The network was trained for 400 epochs on a 1500 vector-length data set. The
learning rate was initialized to 5.0. The data set for this application consisted of four
features computed from a variable width sample of speech. The first feature was the total
energy contained in the sample. The second feature was the number of zero-crossings that
occurred during the sample period divided by the sample window length. The third feature
was the number of slope changes divided by the sample window length. And the fourth
feature was the total energy below 500 hertz within the sample window. The desired output
was a classification based upon whether the input features described a fricative (class 1)
or voiced (class 0) portion of speech. The classification was assessed purely on human

discretion.

Figure 25 displays the results of the recurrent network after training for 400 epochs
through the 1500 vector-length data set. The decision accuracy of 98.4% was based upon
whether the network output was greater than 0.5 for a ciass 1 or less than 0.5 for a class 0.

The few classification errors the network made were for noisy regions that contain higher

49




than normal energy (such as the sound for the letter "k").

NETWORK OUTPUT

Figure 25.

Voice Data Training Results

1.4 T L L) S L) ¥ ¥ T
desired class output
12 + network output ©
| accuracy=98.4% decision threshold ----
1 -.T
?l | ° ﬁ J
08 F -
0.6 ° .
0.4 - -4
02F71 :0 -
0 le 1 1
0 50 100 150 200 250 300 350 400 450
TIME (arbitrary)

Voice data classification results after training on 400 epochs. The few clas-
sification errors the network made are for noisy regions that contain higher
than normal energy (such as the sound for the letter "k").

Following training, the network weights were saved and used in the reconstruction

program. Within the reconstruction program, the weights were used with the transmitted

signal to reconstruct the speech pattern, adding noise where needed based upon the net-

work’s classification decision. Figure 26 illustrates how the network weights were used in

the reconstruction program to classify a given speech pattern. The fricative regions classi-

fied as "1" were noisy regions where noise was added to the signal during reconstruction.

In the voiced "0" regions, no noise was added to the signal during reconstruction. Using

this network, the reconstruction program was able to reproduce an intelligible voice signal

whereas the decisions made by the feedforward netwc:k previously used could not.

50




Recurrent Network Decisions Used in Voice Reconstruction Program

voice signal —
network decision -*--
H m

1

I
|
|
|
|
!
I
i
1
1

AMPLITUDE

_1 J— i L

0 3000 6000 12000 15000 18000
TIME (125us)

Figure 26. Recurrent network decisions made within the reconstruction program. Areas
classified as "1" are considered fricatives (noisy regions), and noise was added
to that portion of speech during reconstruction. No noise was added to the
voiced regions classified a "0".

51




4.7 Summary

The recurrent neural network was tested using several temporally encoded data
sets. From these test results, the network demonstrated the ability to learn the internal
state problem and the second order IIR lowpass Butterworth filter problem. Specifically
noted was the network’s ability to learn both the temporal response and frequency domain

response of the Butterworth filter by training only on the filter’s impulse response.

The recurrent network was also tested on the classic XOR problem. However, it
was discovered that the recurrent network did not learn this problem in the classic spatial
sense. Rather it learns the problem in a spatio-temporal decision space. There was found
no clear decision region which could be used to delineate the correct decisions from the

incorrect decisions, as shown by Figure 9.

Following testing, the recurrent network was applied to two problems: head position
tracking, and voice data reconstruction. The accuracy at which the network predicted the
pilot’s head position showed the recurrent network’s ability to predict trajectories and
motion as well as, or slightly better than, the best linear predictor. The application of the
network to the reconstruction of voice data showed the network’s ability to make accurate
decisions based upon the leaming of temporally encoded sequences. Thus, through both
of these applications, the recurrent network displayed a high degree of generalization.
Therefore, the extension of the recurrent neural network’s application to a wide range of

differing problems would be a straight-forward process.

52




V. Conclusions and Recommendations

This thesis effort has sought to encode the RTRL algorithm, test it, and use it to
predict the future value of a function based upon the function’s history. This process,

called function prediction, is extremely important to many Air Force applications.

5.1 Conclusions

The RTRL algorithm has demonstrated the ability to learn several time dependent
functions. From the test results outlined in Chapter IV, the network demonstrated the
ability to learn the internal state problem, and the second order IIR lowpass Butterworth
filter problem. Also the recurrent network demonstrated the ability to temporally learn the
classic XOR problem.

However, in an exact sense, it could not learn the true spatial mapping of the XOR
problem because of the te:nporal information contained in the sequential data. This was
evidenced by the fact that no clear spatial decision region could be used to delineate the

correct decisions from the incorrect decisions, as Figure 9 illustrates.

The recurrent network was also applied to two problems: head position tracking,
and voice data reconstruction. The accuracy at which the network predicted the pilot’s
head positions showed the recurrent network’s ability to predict trajectories and motion.
The application of the network to the reconstruction of voice data showed the network’s

ability to learn temporally encoded sequences.

The recurrent network has demonstrated a high degree of accuracy as a function
prediction tool. In the Butterworth filter application, the network not only simulated the
response of the filter to various input signals, it did so predictively. In other words, the
output of the network was a prediction of the output of the filter for the next time step.
This prediction was based upon the current signal activation and the previous network

response. For the head position tracking problem, the recurrent network demonstrated a

33




high degree of accuracy in predicting spatial head position at either 2 or 5 time steps in the
future. The time step was arbitrary and was based on the sampling rate of the data being
analyzed.

5.2 Recommendations

A recommendation that may improve the rate of convergence of the network entails
the use of a network reduction scheme. One such method makes use of the Ruck saliency
metric (16, 17). This method examines the responsiveness of the network’s output to its
input in order to rank the network’s nodal usefulness. This way, the network can be pruned
down, reducing the number of interconnection weights and processing nodes. A direct
result of this reduction would be a great increase in computational speed and network

convergence.

Another recommendation would be to investigate a way to determine what the
recurrent neural network learned during the training process. It is known how the network
learns and how it performs when trained, but it is still not exactly known what the network

learns in order to make accurate decisions.

5.3 Future Research

Much more research is necded in the area of recurrent networks. Two specific
topics are brought to light by this thesis. One is the concept of the recurrent network’s
capacity to remember. Does the network really remember the temporal nature of the task
it is presented? Does it forget at some future time? How does the logistic squashing
function affect the network’s capacity to remember? The second topic of future research
is the spatio-temporal mapping of the recurrent network’s decision region. What kind of
decision region does the recurrent network create in the process of making a decision? Do
tie internal state variables play an important role in the decision process? Is this decision

region purely a temporal mapping, or does this mapping contain both spatial and temporal

information?




Appendix A. Software Development

Appendix B contains the source listing for the modified RTRL algorithm developed
at AFIT called "RECNET" (short for recurrent neural network). RECNET was written in
"ANSI C" and has been successfully compiled and run on all of the following computer
systems: Silicon Graphics 4D/GTX, Silicon Graphics Personal IRIS 4D, NeXT NeXTsta-
tion, and IBM/compatable "AT class" personal computers using Turbo C++. The main

program file is named "recnet.c”.

A.1 File Parameters

RECNET requires two data files, called "parameters.dat” and "data.dat” (default).

"parameters.dat” is a data file which contains the following three numbers:
num_epochs learning_rate random_number_seed

The "num_epochs” (integer) is the epoch length for a specific training run. The "learn-
ing_rate” (float) is the learning rate of the network. If the output nodes of the network are
defined as sigmoidal, the learning rate can be set to any value that works. If the output
nodes are defined as linear, the learning rate must be small (alpha < 0.5) for the network to
remain stable. The "random_number.seed” (integer) is the seed used to randomly generate
the weight matrix. The data file "data.dat” is the default name for the data file to be read
during training or testing. If a data filename is passed to RECNET at the command line,

RECNET will read that filename as the input data file. For example, the command
recnet mydatafile.dat

will execute RECNET using "mydatafile.dat” as the current input data file. To test a data

file, the command
recnet mytestfile.dat test

55




will execute RECNET using "mytestfile.dat" as the input test data file. The format of the
data file is as follows:

numinputs numoutputs numnodes numvectors

inl in2...numinputs desl des2...numoutputs (vectorl)
(vector2)
(vector3)
(vector4)
(vector5)

(vectors6)

numvectors

where "numinputs” (integer) is the number of external inputs, "numoutputs™ (integer)
is the number of external outputs, "numnodes” (integer) is total number of processing
nodes (which includes the output nodes), "numvectors” (integer) is the total number of
input/desired_output vectors, "inl in2..." (float) are the actual values to be read as inputs
(there should be 'numinputs’ of these), and "des! des2..." (float) are the actual desired
output values (there should be 'numoutputs’ of these). Each vector is considered a seperate
timed event.

A.2 Environment

RECNET dynamically configures itself using the data contained in the data file
header line. During initialization, memory space is allocated for all variables and all
inputs and desired outputs are read in before any computation begins. After initialization,
the network begins training on the data, dynamically adjusting the weights until either the
total error drops below 0.0005, or the total number of epochs have been reached.

RECNET will display different information depending on which mode of operation is
selected. During training, RECNET will output to the terminal screen various information.
First, it will show how it is configured by displaying the data file header line. Following

56




this, the epochwise total error is printed to show how the network is learning, or whether
or not it is learning. During testing, RECNET outputs the current configuration to the
termmaal screen. In addition, it displays the names of the three data files it creates during

the test run, These files are described in the next section.

A3 Cuput

After network training is complete, several output data files are created. First, the
data file "weights.dat" is created. It contains a z(t) vector listing for the very last timed input
vector and a listing of the complete weight matrix, in row-column format, after training.
In addition, the files "desired.dat” and "netout.dat" are created. The file "desired.dat"
contains a listing of the desired output values, and the file "netout.dat" contains a listing
of the actual network output values corresponding to the appropriate desired output value.
These two files are separate to aid in plotting the data.

After testing, RECNET creates three data files. They are described as follows:
"testcheck.dat" contains a comparative listing of the computed network output and the
desired network output, "testdes.dat" contains a listing of the desired network output,
and "testout.dat” contains a listing of the computed netork output. Again, these files are

seperate to aid in plotting the data.

AN
~1




Appendix B. Recurrent Neural Network Source Code

This appendix contains a listing of the modified real-time recurrent learning algo-
rithm source code and its supporting functions. The files "nrutil.c" and "ranl.c" were used

from the Numerical Recipies in C book (12).
[+ definitions.h sskskkskskokkkokokokskkkok ok ko ook oksk ok koo kok dok ko ko sk ok ok ok skokok

File containing function declarations and variable
declarations for the main program called recnet.c.

date: 30 May 91
written by: Randall L. Lindsey

sk oo ok ok ke s sk ook ok ok e ook s ke ok o sk kS ok s ok s ok sk sk ok ok sk sk ok ook ke o o ok ok ok ok o sk sk ke sk ok sk sk sk ok ok ok ek o
float *vector();

float **xmatrix();

float **xmatrix3d();

float ran1();

FILE «ifp, *ofp;

int run=1;

char str[80], *datafile;

int nrows, ncols, i, j, k, 1, m, n;
int epochs, a, t;

int num_inputs, num_outputs, num.nodes, num_vectors;
int seed, idum=1;

float alpha, J[2], sum, kron;
float +y, s, *e, xyprime;

float *xz, *xd, *xw, x*xdelw;
float #*xxp, *+xp_old, **x*+p_temp;
float sigmoid(float x);

void init_net();

void train_net();

void test_net();

void read.data();

void propagate();

void compute_output();

void compute_error();

void update();

void reset_delw._s();

void reset.p();

void save.weights();

void read_weights();

58




void check_file();

Dotk ok aiooloRsk ok ok sk ok Aok Kok ok skokok ok ikl skl otk o sk kol sk ok ok sk sk ko ok ok ok ko kol

[k MACROS. H scrskkiksksokdokkskokokdokkkok dokskok ok ok sk kosk kb ok skodor ok kok sk kok ok
char junk_response[256];

#define fskip.line(A) fgets(junk_response, 256, A)
#define skip_line gets(junk_response)

#define rloopi(A) for(i=(A)—1;i>0;i—~)

#define rloopj(A) for(j=(A)-1;j=>0;j—-)

#define rloopk(A) for(k=(A)—1;k>0k—~)

#define rloopl(A) for(I=(A)—1;1>0;1—~)

#define rloopij(A,B) for(i=(A)—1;i>0;i—~) for(j=(B)—1,j>0;j—-)

#define loopi(A) for(i=0;i<A;i++)

#define loopj(A) for(j=0;j<Aj++)

#define loopk(A) for(k=0;k<A;k++)

#define loopl(A) for(I=0;1<A;l++)

#define loopij(A,B) for(i=0;i<A;i++) for(j=0;j<B;j++)

#define CREATE FILE(A,B,C) if({A=fopen(B,"w")) == NULL) { \
printf(strcat(C,": can't open for writing - %s.\n"),B);\
exit (—1); }
#define OPEN_FILE(A,B,C) if((A=fopen(B,"r*)) == NULL) { \
printf(strcat(C," : can't open for reading - %s.\n"),B);\
exit (—1); }

#define IABS(A) ((int)((—(A)<(ANN(A)):(—(A)))

Dseksokskok sk ok skokdokok ok ok ok ok ofokaok ok kR sk ok ok ok ootk ook ok sk ok

/¥ RECNET.C % skkikkokd sk ko sk ko skokok ok okok ok ko ok skok dokok dokok ok sk ok ok ok ok ok ko

A recurrent neural network which follows the algorithm
proposed by Williams and Zipser in their paper "A Learning
Algorithm for Continually Running Fully Recurrent

Neural Networks", Neural Computation 1, 270-280 (1989).

date: 30 May 91
update: 15 Jul 91

59




written by: Randall L. Lindsey, GEO-91D
sk ROk kR kR kAR Rk Rk Rk KRR Rk ok sk ok ok

#include <stdio.h>

#include "macros.h"
#include <math.h>

#include *definitions.h"
#include <string.h>

void main(int argc, char *argv[])

switch (argc) {
case 1:
datafile="data.dat"; /x Default name of datafile. i
check file(); /* Check to see if the datafile name exists. #
init_net(); /+ Initialize and define all network variables.
Allocate memory for all vectors and matricies
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. i
read_data(); /* Read data vector array and desired output. ¥
train_net(); /* Propagate inputs and update weights based on

gradient descent. 4
break;
case 2:
datafile=argv[1]; /* User specified name of datafile. ¥

check. file(); /x Check to see if the datafile name exists. #
init_net(); /x Initialize and define all network variables.
Allocate memory for all vectors and matricies
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. ¥
read_data(); /* Read data vector array and desired output. ¥
train_net(); /* Propagate inputs, compute outputs, and
update weights based on gradient descent. ¥
break;

case 3:
datafile=argv([1]; /* User specified name of datafile. A
check_file(); /+ Check to see if the datafile name exists. ¥
init_net(); /* Initialize and define all network variables.
Allocate memory for all vectors and matricies
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. i
test_net(); /x Propagate inputs and compute outputs. ¥

60




break;

default:

printf("\nUsage: net [datafilename.dat] [testflag]\n\n");

break;
}

} i End MAIN() of RECNET.C #

void train_net() /* Written 10 Jun 91, RLL. +
/* Begin main loop portion ¥

ofp=fopen("error.trn", "w");
for(a=0;a<epochs;a++) {
JI0)=J{1];
J1]1=0,
for(t=0;t<num_vectors;t++) {

propagate();  /* Computes the state of the net at time t.
Store previous outputs y[t-1] as part of
the new input vector z[t][i]. Sum all
z[][]+w[][] inputs into the activation
vector s[t] for input into y[t]. ¥

compute._error(); /x Computes the error at time t.
How far off are the outputs from the
desired values? Compute total error.

compute_output(); /x Compute the output y(t+1)=fIs(t)].
update(); /*x Computes del.w(t), and p(t+1). Backprop
error through net and perform gradient
descent to calculate the delta weights. ¥

reset_delw_s(); /+ Reset delta weights and s[t] vectors
to zero for the next iteration. A
}

printf("%s % f\n","total error =",J[1]); /* Print total error.¥

if ((a > 5) && (J[0)/J[1] < 0.95)) {

alpha = alpha/2.0;

printf(*% £ % f alpha = % £\n"J[0],J[1],alpha);
}

61




if J[1] < 0.0005) { /x If total error is less than a specific ¥
save.weights(); /* fractional value (arbitrary), then exit.¥
printf(" ¥d\n",a);

exit(0);

fprintf(ofp," % £\n",J[1]);

reset.p();  /x Zero p_old[][][] matrix for next epoch. ¥
} /* End main loop portion ¥
fclose(ofp);
save.weights();  /* Save weights, input vector z, and desired

output to a data file for future use. ¥

return;

} /% end function train_net() ¥

void test.net()  /x Written 10 Jun 91, RLL. #
/x Begin main loop portion ¥

read.weights(); /x Read weight matrix and saved p states.
read.data(); /x Read data vector array and desired output. ¥

ofp=fopen("error.tst", "w");
J1]=0.
for(t=0;t<num_vectors;t++) {

propagate();  /+ Store previous outputs y[t-1] as part of

the new input vector z{t]{i]. Sum all

z[][]*w[][] inputs into the activation

vector s[t] for input into y[t]. ¥
compute_output(); /+ Compute the output y(t+1)=f[s(t)].
compute_error(); /x Computes the error at time t,

How far off are the outputs from the

desired values? Compute total error.  #

reset-delw_s(); /x Reset delta weights,and s[] vectors to
zero for the next iteration. ¥

fprintf(ofp,"% £\n",J{1]);

62

¥

i




} /% End main loop portion ¥
fclose(ofp);

ofp=fopen("testcheck.dat", "w");
loopi(num_vectors) {
loopj(num_outputs)

fprintf(ofp,* % £ *,z[i][j+m]);
loopj(num_outputs)

fprintfofp,* % £ =,G{i}{j}
fprintf(ofp,"\n"),

fclose(ofp);

ofp=fopen("testdas.dat", "w");
loopi(num_vectors)
loopj(num_outputs)

fprintf(ofp,* % £\n",d{il{iD;
fclose(ofp);

ofp=fopen("testout.dat", "w");
loopi(num_vectors)
loopj(num_outputs)

fprintf(ofp," % £\n",z[i}[j+m]);
fclose(ofp);

printf(" ' testcheck.dat' contains test data.\n");
printf(" ' testout .dat' contains net output test data.\n");
printf(* ' testdes.dat' contains desired output test data.\n"),
return;

} /+ end function test_net() ¥

float sigmoid(float x) /x Written 30 May 91, RLL. #
static float max.val=50.;
if (x > max_val)
return 1.0;
if (x < —max_val)
return 0.0;
return 1/(1 + exp(—x));

} /x end sigmoid #

63




void init_net() I+ Written 10 Jun 91, RLL. #

/* Read data from the input file "parameters.dat” ¥

ifp:fOPen( “parameters. dat", "r" );
fscanf(ifp," %4 %£f %d",&epochs,&alpha,&seed);
fclose(ifp);

I+ Read data from the input file datafile (user specified) ¥

ifp=fopen(datafile, "x*);

fscanf(ifp,”%3d %d %d",&num.inputs,&num_outputs,&num_nodes);
fscanf(ifp, * 4" ,&num_vectors);

printf("%d %d %d\n",num.inputs,num_outputs,num_nodes);
fclose(ifp);

m = num.nputs + 1; /x # of external inputs ¥
nrows = n = num-nodes; /x # of rows for weight matrix +
ncols = m + num-nodes; /x # of cols for weight matrix +

/= Allocate memory for vectors and matrices ¥

e=vector(Q,nrows—1); /x error vector ¥

y=vector(O,nrows—1); /x output vector ¥
s=vector(O,nrows—1); /x sum of weighted inputs ¥
yprime=vector(0,num_nodes—1); /x dy/dw #
w=matrix(0,nrows—1,0,ncols—1); /x weight matrix ¥
delw=matrix(0,nrows—1,0,ncols—1); /x delta weights #
z=matrix(0,num_vectors,0,ncols—1); /* input vector array +
d=matrix(0,num_vectors,0,ncols—1); /* desired output array ¥
p=matrix3d(0,nrows—1,0,ncols—1,0,nrows—1); /x dy/dw #
p-old=matrix3d(0,nrows—1,0,ncols—1,0,nrows—1); /+ dy/dw #

/* Initialize variables to zero ¥

J[0}=J[1]=0.0;
loopij(num_vectors,ncols)
2[il[j] = 0.;
loopij(num_vectors,num_outputs)
dfi](i1=0.;
loopi(nrows) {
yli} =slil=e[i] =0.;
loopj(ncols) {
wli][j] = delw[i][j] = 0.;




loopk(nrows)
} plil(i1{k] = p-old(i](jl(k] = 0.; |
}
/x Initialize weight matrix using psuedo-random numbers ¥
idum = —JABS(seed);
ranl(&idum);
loopi(nrows) {
loopj(ncols) { |
wli][j] = 2xran1(&idum)—1.0; ‘
printf(* % £ *,w[il{j]);

printf(* \n"); |

/x Initialize first input to 1 (non-external) ¥

loopi(num_vectors)
z[i][0] = 1.;

return;

}

void read_data() /x Written 10 Jun 91, RLL.

/* Read data file external inputs ¥

ifp=fopen(datafile, "r");
fskip_line(ifp);
loopi(num.vectors) {
loopj(num_inputs)
fscanf(ifp," $ £, &z[i][j+11);
loopj(num_outputs)
fscanf(ifp," % £ " ,&d[i][j]);

fclose(ifp);
return;

}

void propagate() /x Wiritten 10 Jun 91, RLL. #
/x Computes the state of the net at time t, and
initializes the z vector for time t. ¥

65




/x Set previous outputs y[k]=y(t) as part of the next input z[t][k+m]. ¥

loopk(nrows)

z[t](k+m] = y[K];
/x Sum all inputs into each of the k nodes. ¥

loopk(nrows)
loopi(ncols)

s[k] += wik{i] * z[t]{i];

return,

}

void compute_output() /x Written 16 Jul 91, RLL. ¥
/+ Computes the output at time (t+1), ie y(t+1). ¥

Ix Process each of the k nodes as Sigmoidal functions with input s(t]
unless LINEAR is defined, in which only output nodes are linear
functions of s[t] and the remaining hidden nodes remain Sigmoidal.
The output computed is y[k] = y(t+1) = f(s[t]).

¥

#ifdef LINEAR
loopk(num_outputs)
ylk] = s[k];
loopk(nrows—num_outputs)
ylk+num_outputs] = sigmoid(s[k+num_outputs]);
#else
Ioopk(nrows)

ylk] = sigmoid(s(k]); /+ Here, y[k]=y(t+1). #
#endif

return ;

}

void compute_error() /* Written 10 Jun 91, RLL. #

/x Compute error at time t based on desired output values. Returns a
zero error for t=0 on first epoch. ¥

if (t==0) && (a == 0)) return;
else




loopk(num_outputs)
e[k] = d[t][k] — y[k];

/x Total error cumulated over each epoch. After each epoch, J=0. #

loopk(num_outputs)
J[1] +=0.5 * e[k] * €[k];

retum ;

}

void update() /x Written 10 Jun 91, RLL.
Modified 28 Jun 91, RLL. #

/* Compute change of weights at time t. delw is reset to zero at each
iteration (time step), and p_old is p(t). #

loopij(nrows,ncols)
loopk(num_outputs)
delw[i][j] += alpha * e[k] * p_old[i]{j][k];

/+ Update rules. Computes p(t+1). ¥

#ifdef LINEAR
loopk(num_outputs)
yprime[k] = z[t][k];
loopk(nrows—num_outputs)
yprime[k+num_outputs] = y[k]*(1.0—-y[k]);
#else
loopk(nrows)
yprime[k] = y(k}x(1.0-y[k]);  /* Uses ylk] =y(t+1).  #
#endif
/+ m=npum_inputs+1 4

loopi(nrows) /¥ nrows = num_nodes. ¥
loopj(ncols) /x ncols = num.nodes + #
loopk(nrows) { /% num_inputs +1
kron = 0.0; I+ Kronecker delta function.¥

if (i==k) kron = 1.0;
sum = 0.;
loopl(num_nodes)
sum += wlk]{l+m]*p_old[i]{jl{1]; /% p_old =p(t). ¥
plil[il[k] = yprime[k]x(sum+kron*z[t][j]); /* Usesz(t). #

} 1+ p{I[](] is now for time p(t+1). #

67




I+ Update weights. Computes weights for time w(t+1). ¥

loopij(nrows,ncols)

wli}({] += delw[i]{j;

/x Save partial derivitives for next iteration (time t+1) and reset
p matrix by swapping the pointers of the old p matrix with the new
p matrix. #

p-temp = p_old;
p-old = p; /* p_old is now p(t+1).
p = p-temp;
return ;
}

void reset_delw_s() /x Written 30 May 91, RLL. #
{

/x Reset delta weights and input sum to zero for next calculation. ¥

loopij(nrows,ncols)
delw[i](j1 =0.;
loopi(nrows)
s[i]=0.;
return;

}
void reset_p() /x Written 15Jul 91, RLL. 4
{

Ix Zero p_old[][][] for next calculation. ¥

loopij(nrows,ncols)
loopk(nrows)
p-old[i](jl(k] = 0.;

loopi(nrows)
ylil =0,

return;

}

void save_weights() /* Written 28 Jun 91, RLL. #
FILE *afp;

68




ofp=fopen("weights.dat", "w");
i=num_vectors — 1;
loopj(ncols)
fprintf(ofp,"% £ *,z[i][j]);
fprintf(ofp," \n");
loopi(nrows) {
loopj(ncols)
fprintf(ofp,"$ £ *,w(i][j]);
fprintf(ofp,” \n");

fclose(ofp);
afp=fopen("netout.dat", "w");
loopi(num_vectors) {
loopj(num_outputs)
fprintf(ofp,"% £ ",z[i]{j+m]);
fprintf(ofp," \n");

fclose(afp);
afp=fopen("desired.dat", "w");
loopi(num_vectors) {
loopj(num_outputs)
fprintf(ofp,"% £ " d[i][]);
fprintf(ofp," \n");

fclose(afp);
return;

}
void read._weights() /x Written 28 Jun 91, RLL. ¥

ifp=fopen(*weights.dat", "r");
i=0;
loopj(ncols)
fscanf(ifp, " % £ * ,&z[i][j]);
loopi(nrows)
loopj(ncols)
fscanf(ifp," $ £ * , &wl[il[j]);
fclose(ifp);
retum;

}
void check_file() /x Written 10 Jul 91, RLL. #
FILE xafp;

afp = fopen(datafile,"r*);




if(afp == NULL) {
/«strepy(afile, "File not found");¥
printf(*\n%s %s\n"datafile,": File not found.");
exit(0);

}
else fclose(afp);
return;

}

Jeskokoksk ok ok sk e ok sk e ok o ke e sk sk ok sk ok otk sk kool sk ook sk ok ok ek ok s ok skokok s ok ok o

/¥ NRUTIL.C skskkskkkskkksrsdokikorkskohkiokskiokkdokksddkoksk ok dkokk ko k

Utilities which create vectors, matricies, and
3-D matrices.

sk kok ok ok Kok ok sk ks ko ok ks ok okokok ok sk ok ok kiR ok ok sk ok ok ok ok ook

#include *malloc.h*
#include <stdio.h>

void nrerror(error_text)
char error.text[];

void exit();

fprintf(stderr,"Numerical Recipes run-time error...\n");
fprintf(stderr," $s\n* error.text);

fprintf(stderr,” . . .now exiting to system...\n");

exit(1);

float xvector(nl,nh)
int nl,nh;

float *v;

v=(float *)malloc((unsigned) (nh~nl+1)*sizeof(float));
if ('v) nremor("allocation failure in vector()");
return v—nl;

}

int xivector(nl,nh)
int nl,nh;

{

int xv;

70




v=(int *)malloc((unsigned) (nh—nl+1)«sizeof(int));
if ('v) nrerror(*allocation failure in ivector()"),
return v-nl;

}

double xdvector(nl,nh)
int nl,nh;

double *v;

v=(double *)malloc((unsigned) (nh—nl+1)*sizeof(double));
if ('v) nrerror("allocation failure in dvector()");
return v—nl;

}

float xxmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;
i

inti,;

float **m;

m=(float **) malloc((unsigned) (nrh~nrl+1)*sizeof(float*));
if (!m) nrerror(*allocation failure 1 in matrix()*);
m —=nrl;

for(i=nrl;i<nrh;i++) {
m(i]=(float *) malloc((unsigned) (nch—ncl+1)*sizeof(float));
if (!m[i]) nrerror("allocaticn failure 2 in matrix()");
m[i] —=ncl;

return m;

}

/***************************************************************
matrix3d() created by Randall Lindsey on 15 May 91 for
use in recnet.c
**************************************************************V

float xx*matrix3d(nr!,nrh,ncl,nch,ndl,ndh)
int nrl,nrh,ncl,nch,ndl,ndh;

int i,j;
float *xxm;

m=(tloat *%x) malloc((unsigned) (nrh~nrl+1)xsizeof(float+x));

71




if (!m) nrerror("allocation failure 1 in matrix3d()");
m —= nrl;

for(i=nrl;i<nrh;i++) {
mfi}=(float **) malloc((unsigned) (nch—ncl+1)*sizeof(floatx));
if (!m[i]) nrerror(*allocation failure 2 in matrix3d()");
m(i] —= ncl;
for(j=ncl;j<nch;j++) {
m[i]{j]=(float *) malloc((unsigned) (ndh—ndl+1)xsizeof(float));

if (!m[i](j]) nrerror("allocation failure 3 in matrix3d()");

m(i][j] —=nd];
}

refurn m;

}

double *x*xdmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;
L .

int i;

double **m;

m=(double xx) malloc((unsigned) (nrh—nrl+1)*sizeof(doublex));
if (!m) nrerror(*allocation failure 1 in dmatrix()");
m —=nrl;

for(i=nrl;i<nrh;i++) {
mfi]=(double *) malloc((unsigned) (nch—ncl+1)+sizeof(double));
if (!m[i]) nrerror("allocation failure 2 in dmatrix()");
mfi] —=ncl;

return m,;

}

int **ximatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

{

int i,%+m;

m=(int *x*)malloc((unsigned) (nrh—nrl+1)xsizeof(intx));
if (Im) nrerror(*allocation failure 1 in imatrix()");
m —=nrl;

for(i=nrl;i<nrh;i++) {
m[i]=(int *)malloc((unsigned) (nch—ncl+1)*sizeof(int));
if ('m{i}) nrerror(*allocation failure 2 in imatrix()");
m(i] —=ncl;

72




}

return m;

}

Dokttt ok ko s sk ok s koo ok ok ksl ot ok ook ok ke ek kol sk stk ok sk sk sk ok sk ok ke kol ek ko ek o ok of

T RANLC soxsksbokskoroksorsk ook dokdkokkokdokdokokokkokokskokok ok kokokodkokokdok kokokokokok
Numerical Recipies pseudo-random number generator.

sokokokaokok kR ok kR ok ok sk sk sk ok ok sk ok ok ok ks ok s ok ok sk ok ok ko sk ok

#define M1 259200
#define IA1 7141
#define IC1 54773
#define RM1 (1.0/M1)
#define M2 134456
#define TA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 243000
#define IA3 4561
#define IC2 51349

extern float ran1(idum)
i{nt *xidum;

static long ix1,ix2,ix3;

static float r[98];

float temp;

static int iff=0;

int j;

void nrerror();

if (xidum < 0 || iff == 0) {

iff=1;

ix1=(IC1—(*idum)) % M1,

ixI1=(IA1xix1+IC1) % M1,

ix2=ix1 % M2,

ix1=(IA1xix1+IC1) % M1;

ix3=ix1 % M3,

for (j=1;j<97;j++) {
ix1=(IA1xix1+IC1) % M1,
ix2=(IA2%ix2+IC2) % M2,
r{jl=(ix1+ix2*RM2)*xRM1;

¥idum=1;

73




}

ix1=(IA1xix1+IC1) % M1,

ix2=(IA2xix2+IC2) % M2;

ix3=(IA3%ix3+IC3) % M3;

j=1 + ((97%ix3)/M3);

if G >97|]j < 1) nrerror("RAN1: This cannot happen.");
temp=r{il;

riil=(x1+ix2¥RM2)«RM1;

return temp;

}

#undef M1
#undef IA1
#undef IC1
#undef RM1
#undef M2
#undef IA2
#undef IC2
#undef RM2
#undef M3
#undef IA3
#undef I1C3

Dok sk ok okt skokRok sl ok sstolorok s ok sk skekok ok sk ke sk kokok s sk skok sk ok ko

Tk sk s koksk stk ook ke sk ok ek ok ks ko ok ko s ko sk ook skok sk ok sk s stk o Kok . sk ek sk ok sk o ok ok ko

The following additional listing is a supporting data file required for the recurrent

network program to work properly.

/¥ PARAMETERS. DAT #kskokskdokok ks ko sk ko okok ok odokok s okosk ok okok ok sk etk ok kokokof
300 4.0 987654321

Dokt ok ok ok sk ko ok s ok ok sklokok ok ok ko sokkokokok ko ok ok ok sk ko ok ok Aok

74




Appendix C. Source Code for Creation of Data

This appendix contains a listing of the source code which generated the data for

testing the modified recurrent neural network.

Jx MAKE_DATA.C #okkskksrskokskhokokkskokkskokskokkokok ko sdok sk dok o ok ok ok ek ok ko

#include <stdio.h>
#include "macros.h"
#include "ranl.c"

FILE xofp, *ifp;
void main(int argc, char *argv(])

float class,junk{2][2048]},x[2]{2048],a0,a1,a2,b0,b1;
int idum=1,i,j,bubba;

switch (argc) {

case 1:

case 2:

printf("\n%s\n\n","Usage: make_data filename.dat num_nodes [binl");
exit(0);
break;

case 3:
a0=0.0676; a1=0.1352; a2=0.0676;
b0=1.1422; b1=—0.4124;
bubba=atoi(argv[2]);
ofp=fopen(argv[1], "w");
idum = —IABS(737496732),
ranl(&idum);
fprintf(ofp,"$d %d %d %d\n",l1,1,bubba,100);
x[11[0}=x[1][11=0.0;
loopi(100)
X[O0][i] = 2.0#r _.1{(&idum)—1.0;
loopi(98)
x[1][i+2]=a0%x[0][i+2]+al *x[0][i+1]+a2*x[0] [i]+bO*x[1][i+1]+b1*x[1][i];
loopi(100)
fprintf(ofp,"% £ % £ \n"x{O){i],x[1][i]);
fclose(ofp);

75




break;

case 4:
bubba=atoi(argv(2]);
ofp=fopen(argv{l], "w");
idum = —IABS(97475298);
ranl(&idum);
fprintf(ofp,"$d %4 %d %d",1,1,bubba,2048);
junk[1](0]=0.;
loopi(2048)
junk[0][i]=ran1(&idum);
loopi(2048)
junk{1]{i]=junk[0](il;
loopi(2048)
fprintf(ofp,"\n% £ % £ ",junk[0][i],junk[1]{i]);
fclose(ofp);
break;

}
}

Jesteskestook ks ok ok ok ok sk ok ook ok sk ok ke sk ok ok sk ok ok sokook ekt kok sk ook o sk ksl ko ook sk sk ok okl

% XOR_DATA.C skkxskskksksikkskskiohtoriokokkdkkkkdkbkksokiokikkkokk okl

#include <stdio.h>
#include "macros.h*
#include "ranl.c"

FILE *ofp, xifp;
void main(int argc, char *argv[])

float class,junk[2]{1024],seed;
int idum=1,i,j,bubba;

switch (arge) {
case 1:
case 2:
case 3:
printf(" \n%¥s\n\n","Usage: make_data filename.dat num_nodes seed
(binl"),
exit(0);
break;

case 4:

76




bubba=atoi(argv[2]);
ofp=fopen(argv[1], "w");
idum = —IABS(seed);
ranl(&idum);
fprintf(ofp,"%d %d %d %d",2,1,bubba,1024);
loopi(1024) {
Toopj(2) {

junk[j][i]=ran1(&idum),

if (junk[j][i]>0.5) junk[j][i]=1.0;

else junk[j}[i]=0.0;

if ? 2) class=1.0;

else
if (Gunk[0][i—2]>0.5) && (junk[1][i—2]>0.5)) class=0.0;
if ((junk[0]{i—2]<0.5) && (junk{1]{i—2]>0.5)) class=1.0;
if ((junk[0][i—2]>0.5) && (junk[1][i—2]<0.5)) class=1.0;
if ((junk[0][i—2]<0.5) && (junk[1][i—2]<0.5)) class=0.0;

fprintf(ofp,"\n%f %£ $£ " junk{O]{i],junk[1]{i],class);

fclose(ofp);
break;

case 5:
bubba=atoi(argv[2]);
ofp=fopen(argv[1], "w");
idum = —IABS(seed);
ranl(&idum);
fprintf(ofp,"$d %d %d %d",2,1,bubba,1024);
loopi(1024) {
loopj(2)
junk[jl[i}=ran1(&idum);
if (i < 2) class=1.0;
else {
if ((junk[0][i—2]>0.5) && (junk[1}{i—2]>0.5)) class=0.0;
if (Gunk[0]{i—2]<0.5) && (junk[1][i—2]>0.5)) class=1.0;
if ((junk[0][i—2]>0.5) && (junk[1][i—2]<0.5)) class=1.0;
if ((junk[0][i—2]<0.5) && (junk[1][i—2]<0.5)) class=0.0;

}
fprintf(ofp,” \n%f %f %f " junk[O][i],junk[1]i],class);

fclose(ofp);
break;

}
}

TRtk ek ok Rk Aok Rk ok Kok ok ks ok ko ok kR ok ok sk o ok Kk ook ook ok ko ok o

77




Appendix D. Utlity Scurce Code

This appendix contains a listing of the utilities source code. These programs were
used to make the data better suited to the neural network environment.
Jxx STAT-NORM, C sk sk ks sokohokskoskskok ok sofoksksk sk sk kokok ook o ok ok skeokok ok sk e ok ok

Performs statistical normalization on filename.dat and
creates filename.dat.sn as its output.

stk ok ook sk sk sk ok ok ko s kb ksl ok sk sk sk ok ok ks o ook sk ok sk ks e o e ok sk sk ke ok sk ke o
#include <stdio.h>

#include <math.h>

#define INPUTS 75 /x max number of features ¥

/+x begin Main Program *+

void main (argc, argv)

int argc;
char *argv[];

[x= == == ==

/x=== Jocal variables ===4

[k=== = = ==

&

<I~

FILE xfopen(),;

FILE xinput, *fopen();

char infile[50];

FILE *output;

char outfile[50];

float value, trash;

float deviation[INPUTS]}, average[INPUTS];
int 1, j, inputs, outputs, ivalue;

int countl, count2, count, waste, temp;

I SEs———=osssoos===—== +
/*=== did user specify an input file ====y
/% ¥

if (arge #2) {
printf ("\n\nUsage -> stat-norm <filename>\n\n");

78




/x=== exit after pointing out the error ==={

exit (1000);
/* = = — = = —— |
/x=== user did specify an input file ===y
/ p 3=t = = = = _==============U
strcpy (infile, argv[1]); / use inputted name as base ¥
[x= = = == === =
/*=== Open Input File ===
[ SR = ==
printf (" \nOpening Input File: %s\n\n",infile);
if ((input = fopen(infile, "rb")))

printf ("\nCan't open input file: %s\n\n",infile);

exit (2000);
/*::.. =. === = ====
/x=== read the header information ===y
Ix ——F L ====

fscanf (input, "$d %d %d %d\n", &countl, &outputs, &inputs, &count);

if (countl < 0 || count2 < 9 || inputs < O || outputs < 0)

printf ("One of the header inputs is negative\n\n"),

exit (3000);

printf ("There are %d training vectors\n",count),

printf ("There are %4 test vectors\n",count);
printf ("There are %d inputs\n",inputs);
printf ("There are %d outputs\n\n", outputs);

/xcount = countl + connt2;¥

/% =

&£

/=== initialize things ===y

/ £ 3 = == et

for (i =0; i < inputs; i++)

{




averagel[i] = deviation[i] = 0.0;

[x=== EEoSEESESRTIET =

/¥=== loop until all data has been read in ===

/ b 3 — t— ——_—===—-——=—-_-==_-=..—==-============¥

printf ("Reading the Data\n\n"),
for (i=0; i < count; i++)
/«fscanf (input, "%d ", &trash);¥ [« read line counter ¥

for (j = 0; j < inputs; j++)

fscanf (input, "$£ ", &value); /* read float values ¥

averagefj] += value;

/x for (j = 0; j < outputs-1; j++)

fscanf (input, "%f ", &value);
¥
Ixfscanf (input, "%f\n\n", &value); ¥

fclose (input);

/ * = == —

i

/*=== calculate the averages ===y

[

printf ("Calculating Averages\n\n");
for (i = 0; i < inputs; i++)

average[i] /= (float)count;

/x =

&

/x=== Re-open the input file ===y

Jr== = =

H

€

printf ("Re-Opening Input File: $s\n\n",infile);

80




if (!(input = fopen(infile, "rb")))

printf ("\nCan't re-open input file: %s\n\n",infile);
exit (2000);

[k == =

/x=== throw away the header informaticn this time ===

/ k=== — " —4 = ——

— — ~— —

fscanf (input, "%d %d %d %d\n", &waste, &waste, &waste, &waste);

-

I* =

/*=== loop until all data has been read in ===
/* —— = =. =

printf ("Reading the Data\n\n"),
for (i =0; i < count; i++)
/xfscanf (input, "%d ", &trash);¥ I+ read line counter ¥
for (j = 0; j < inputs; j++)
fscanf (input, "%£ ", &value); /* read float values ¥

value —= average[j]; /* subtract off the average ¥
value *= value; /x square the result ¥

deviation[j] += value; /« hang onto it until all done ¥

I« for (j = 0; j < outputs-1; j++)

fscanf (input, "%f ", &value);
4

Ixfscanf (input, "%f\n\n", &value);¥

fclose (input);

Jx= = =¥
/x=== calculate the standard deviation ===

[ = = ¥

printf ("Calculating Standard Deviations\n\n");

81




for (i = 0; i < inputs; i++)

deviation[i] /=count — 1;
deviation[i] = (float)sqrt((double)deviation[i]);

/ %= === = — b —

[+x=== make output-file name ===

1% == = === === = ==

&,

sprintf (outfile, "%s.sn", argv[1]);

/% = = ===y
/x=== Open Output File ===

/ k=m=== = = bl = = =

printf ("Opening Output File: %s\n\n",outfile);
if (!(output = fopen(outfile, "wb")))
{

printf ("\nCan't open output file: %s\n\n",outfile);
exit (2000);

/% = = == === /
/¥=== Re-open the input file ===y
/% == === W

printf ("Re-Opening Input File (last time): $%s\n\n",infile);
if (Y(input = fopen(infile, "rb")))
{

printf ("\nCan't re-open input file: %s\n\n",infile);
exit (2000);

/* = = eyt —
/x=== read and save header ==y

[x = R = 3 —

fscanf (input, "3d %d %d %d\n", &countl, &outputs, &inputs, &count);
fprintf (output, "33 %d %d %d\n", countl, outputs, inputs, count);

[x== =: = == W
/x=== read data in, modify it, save it back out ===

[x=== = = f

82




printf ("Reading, Modifying and Re-Saving the Data\n\n");

for (i = 0; i < count; i++)

Ixfscanf (input, "%d ", &ivalue);¥ /x read line counter #
[« fprintf (output, "%d ", ivalue);¥ /* save line counter ¥

for (j = 0; j < inputs; j++)
fscanf (input, "%£f *, &value); /* read float value ¥

value —= average[j); /* modify the value ¥
value /=deviation[j];

fprintf (output,"$£ *,value); /* save modified value ¥

fprintf (output,” \n");
Ix for (j = 0; j < outputs-1; j++)

fscanf (input, "%f ", &value);
fprintf (output, "%f ", value);
4

Ixfscanf (input, "%d\n\n", &ivalue);
fprintf (output, "%d\n\n", ivalue);¥

fclose (input);
fclose (output);

I = = =

&

Ix=== we’re done ===A

/% =. ==

print{ ("Finished.\n\n");

sk ok o e sk ke ook sk ks set ks sk sk ks ke ok o ek s sk ke ok ok sk ok ksl sk Kook o ok s ke ok ok ok ok e sk ok sk o

Fast Fourier Transform Program

Jrk FFET.C skt sokokdok sk ok ok ok ok ook ook dok ol ok kot e kokok ok ko ok

Kook ok kokokkFokok ok ok ok ok ok Rk sk kR kR ok Rk ok ok R kR Rk ke ko

#include <stdio.h>

83




#include <math.h>

#define loopi(A) for(i=0;i<(A);i++)
#define loopj(A) for(j=0;j<(A);j++)
#define loopij(A,B) for (i=0; i<(A); i++)\
for (j=0; j<(B); j++);

#define SQ(A) (A*A)
#define PI  3.1415926

main(int argc,char *argv[])

FILE xfin, *fout;

float *output,xinput,*trunc_out;

float norm;

float *vector();

{xvoid doflip();¥

void fourn();

/*void truncate();¥

/xvoid *free_.vector();¥

char name([30]; , _
" int i,j, nn[1], ndim, isign, new_order, order, image._size;

if(arge # 3) {

printf(* ! !t The command line should be !!!:\n\n £fft_trunc
infile outfile \n\n");
exit(0);

printf(*!!! Input the input images SIZE and ORDER: ")
scanf(* $d%d " ,&image_size,&order);
[t ook ko Set Up dynamic allocations sk skk ks kkkkkkdkk i

input = vector(0,2ximage_sizeximage_size—1);
output = vector(0,image_sizeximage_size—1);

Hexkscionkokkokiokkokk Set Up Files st ssrsktokdokkkskkkioriorkokioky

if ((fin=fopen(argv([1],*r*)) == NULL) {
printf("I can't open the input file"),
exit(—1);

if ((foui=fopen(argv([2],*w*)) == NULL){

84



printf("I can't open the output file");
exit(—1);
Drkkkkkirkkkkkk Read File sxkkkskkdokskkksokkskkkky

loopi(2+image_sizeximage_size—1) /* initialize array to zero ¥
input[i] = 0.0;

loopi(image_sizeximage_size—1)  /«read data in the fourn format #
fscanf(fin, "$£\n", &input[i*2]); /* see numerical recipes in ¢ ¥

fclose(fin); /xciose input file ¥
lxxxxx Initialization parameters for FFT #xssxkx¥

nn[O]=image_size; /* size of mput IAW fourn() +
nn[1]=image_size;

ndim=1; /* one dim FFT +
/xndim=2; ¥ /% two dim FFT #
isign=1; /x FFT 4

fourn(input—1,nn—1,ndim,isign);

Dekxxxsoxrkskkx Find Fourier Magnitude sxxkkxxkksHf
j=0;
for(i=0;i<(2«image_sizeximage._size—1); i+=2) {
output[j]=sqrt((double)SQ(input[i])+(double)SQ(input[i+1]));
i+
norm=output[0]; /x d.c component used for normalization *¥
printf(“%4. 0£\n",norm);
/+x%xx normalize and write output of FFT in argv[2] file **¥
loopi(image.sizeximage._size) {

output[i]=output[i}/norm;
fprintf(fout, *%1.4£f\n", outputfi]);

fclose(fout);

85




Frexxrk dORlipH sk kkskskrorrkkdoksokskokdok ok ook

/xdoflip(output,image_size); ¥ /+ converts fourn format to human format ¥
/xprintf("%4.4f\n",output[8128]);4

[k HUNCALE  skskokkskokkokokskokskok kokok ok sk sk kb ko o ok ok ok ok ok ok s o ek ok ok ok Kok ok o
truncate takes fft(output) of size(image_size) and truncates the
FFT to order specified plus d.c. the array is returned in
trunc_out, the argv[2] ic used as a header when truncate writes
the output in netfft.dat

if(order # 0){

new.order = 2«order+1;

trunc.out = vector(0,image._sizeximage_size—1);
truncate(output,image._size,order,trunc_out, argv{2]);
free_vector(trunc.out,0,image_sizeximage_size—1);

}

free_vector(input,0,2ximage_sizeximage._size—1);
free_vector(output,0,image_sizeximage_size—1);

}

ook ks sk st ek ook oo ok ok sk ok ok ksl ko o ok ok ok ok sk ok o sk s s ok stk ok ke ek o ek o

Jokskok sokok sk sokok ok ok sokokofseokok ok sk ok ki sk kokokok s skek sk ok kil sk ok ok ok ok sk ek ek ok
NAME: fourn.c

DESCRIPTION: Numerical Recipies multi dimensional FFT routine.
Requires a complex column vector as follows:

/real a(1)/

/ complex a(1)/

/ real a(2)/

/ complex a(2)/

/etc/

SUBROUTINES CALLED:

WRITTEN BY: Numerical Recipies in C

sk ok ook ook ok ok ok o ko ok ok ko o ke sk ok ek sk o sk ok ok ok ok sk stk ok ok ook ok sk ok ok ok ok ok ok ki ook sk ok ke ok
#include <math.h>

#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void fourn(data,nn,ndim,isign)
float dataf];

86




int nn{],ndim,isign;

int i1,i2,i3,i2rev,i3rev,ip1,ip2,ip3,ifp1,ifp2;
int ibit,idim,k1,k2,n,nprev,nrem,ntot;

float tempi,tempr;

double theta,wi,wpi,wpr,wr,wtemp;

ntot=1;
for (idim=1;idim<ndim;idim++)
ntot *= nn[idim];
nprev=1,
for (idim=ndim;idim> 1;idim—~) {
n=nn(idim];
nrem=ntot/(n*nprev);
ipl=nprev < 1;
ip2=iplxn;
ip3=ip2*nrem;
i2rev=1;
for (i2=1;i2<ip2;i2+=ip1) {
if (i2 < i2rev) {
for (i1=i2;i1 <i2+ip1-2;i1+=2) {
for (i3=i1;i3<ip3;i3+=ip2) {
i3rev=i2rev+i3—i2;
SWAP(data[i3],data[i3rev]);
SWAP(data[i3+1],datafi3rev+1]);
}
}

ibit=ip2 > 1;

while (ibit > ipl && i2rev > ibit) {
i2rev —=1ibit;
ibit >=1,

}

i2rev += ibit;

ifpl=ipl;
while (ifpl < ip2) {
ifp2=ifpl < 1;
theta=isign*6.28318530717959/(fp2/ip1);
wtemp=sin(0.5xtheta);
wpr = —2.0xwtempswtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (i3=1;i3<ifpl;i3+=ipl) {
for (i1=i3;i1 <i3+ip1-2;i1+=2) {
for (i2=i1;i2<ip3;i2+=ifp2) {

87




kl=i2;

k2=k1+ifpl;
tempr=wrxdata[k2]—wixdata[k2+1];
tempi=wrxdata[k2+1]+wixdata[k2];
data[k2]=data[k1]—tempr;
data[k2+1]=data[k1+1]—tempi;
datafk1] += tempr;

datak1+1] += tempi;

}

Wr=(Wtemp=wr)*wpr—wixwpi+wr;
wi=wixwpr+wtemp*wpi+wi;

}
ifp1=ifp2;

nprev = n;
}
}

#undef SWAP

ootk s sk ke ok ks ok sk ok o koo s ks kool ke ik ok sk ok ok sk ok sk ok o kol

Texxxsxik COSMatrix.c creates the Cosine matrix. s skikksskkkskskkskks

Written By: Jim Goble
Date: 1 July, 1991
Version: 1.0

koo oKk kR Rk ok Rk ks kR Rk Rk kR kR kR ok ok ok okl kb ook ko

#include <math.h>
#include <stdio.h>
#define PI 3.14159265
main()

FILE xCfile,xofp; /x My storage file pointer ¥
double temp,NN; )

double cos(),sqrt();

intmn, M,N, X, Y;

printf(* ! {! Input the desired number of rows:");
scanf("$d", &N);

printf("\n"),

/xprintf("!!! Input the desired number of cycles in Y:");
scanf("%d", &Y);

printf("\n");¥

88




printf(*!!! Input the desired number of cycles in X:");
scanf("%d", &X);
printf("\n");

M=N;
NN=N;

M =M - 1; /x increment variables ¥
N=N-1;

/x Open Cfile for writing. Note there is no error checking! ¥
Cfile = fopen("cos.dat", "w");
/*Compute the CMatrix ¥
for (m = 0; m< M; ++m) {
temp = cos((2+X*m+PI)/NN);
fprintf(Cfile,"$-8.7f\n", temp);
} /x end of m for loop ¥
fclose(Cfile);
} I+ end of program #

JHokesteseok koo ok sk ok ok ok sk Aok sk sk ok ok ok sk ok skt ki sk sk sk kol ok kok kb sorok ok kol

89




Appendix E. Statistical Prediction Algorithm and Source Code

This appendix contains an overview of the statistical prediction algorithm used to
compare with the recurrent network prediction. Following the description of the algorithm

is a listing of the C source code which empliments the statistical prediction algorithm.

E.1 Statistical Prediction Algorithm

Given an ergotic signal described by the function z(t), the future value of x(t) at

time ¢ is given by

cov(a:,,,x,z)

"4} = Elg
3(2) E.“"z]'*' var(:v,,)

(z(tr) = Elz,]) (14)
where the expectation values (means) E[z; ] and E|z,,] are g.ven by
1 N
Efzy] = Elzs] = 5 3 (n) (15)
1
and the variance var(z,,) is given by
var(zy) = Elzy] — E*[zy)) (16)
and the covariance cov(z,, , z,,) is given by
cov(xlﬂxlz) = E['r‘xxiz] - Ez[xh]) (17)

For the variance, the expectation value (mean) of xfx is given by

N
ARSI (18)




and for the covariance, E|z;,, z,,] is given by

N

Elz,z,] = -,‘g;‘ 2(n)a(n + k) (19)

where k is some constant time in the future.

The measure of performance is the mean squared error between the predicted value
and the actual value at some time in the future. This error is given by

error = e = E[(z(t2) — z(t2))?] (20)

E.2 Source Code Listing

The following source code listing is a C emplimentation of the statistical prediction
algorithm previously outlined. It requires two serarate files to be present in the same
directory: "sp_defs.h", a declarations file for the main program, and "param._sp.dat”, a
parameter file for declaring variable arrays. The functions used from "NRUTIL.C" are
listed in Appendix B.

[x SP.C skkkskkskiohkskdskkadokiknksohkkokkokkokkdokdokiokkokskkokok fookokkokkokkokkokk

Statistical Prediction Software. This program performs
the best linear prediction for any ergotic function. The
default input datafile name is "data.dot" but you can use
any filename desired as long as it is passed to SP at the
command line. The results printed to the default
display are self explanitory.

Required input files: sp_defs.h, and params_sp.dat
Files created: stat_results.dat, stat_des.dat

stat_out.dat, and stat_erroi.dat

date: 17 Oct 91

written by: Randali L. Lindsey, GEO-91D
*****************************************************************V

#include <stdio.h>

#include "macros.n*"
#include <math.h>

91




#include "sp_defs.h"
#include <string.h>

void main(int argc, char *argv[])

switch (argc) {

case 1:
datafile="data.dat";
check_file();
initialize();
read_data();
MEAN();
MEAN_SQ();
VAR();
COV();
compute_output();
compute_error();
print_results();

4

case 2:
datafile=argv[1];
check_file();
initialize();
read.data();
MEANQ;
MEAN._SQ();
VAR();

COv0,
compute_output();
compute_error();
print_results();
break;

case 3:

default:

printf(*\nUsage: sp [datafilename.dat] \n\n");
break;

}
} /+ End MAINQ) of SPC ¥

[ssriikkdxkdkok ks Rkokdokokkokkkok ok ok ok ok ok ok ko ok ok okkok ook ok kok o
void initialize()

/= Read data frora the input file "param_sp.dat" ¥

92




printf("%s*,"Init...");

ifp=fopen("param_sp.dat", "r");

fscanf(ifp,"%a %f %4 %d",&epochs,&alpha,&seed,&look_ahead);
fclose(ifp);

/* Read data from the input file datafile (user specified) ¥

ifp=fopen(datafile, *r");

fscanf(ifp,"$d %d %d",&num._inputs,&num_outputs,&num_nodes);
fscanf(ifp," $d",&num_vectors);

fclose(ifp);

m = num.inputs + 1; /+ # of external inputs #
nrows =n = num.nodes; /+ # of rows for weight matrix ¥
ncols = m + num.nodes; /x # of cols for weight matrix ¥

I+ Allocate memory for v.ctors and matrices ¥

e=vector(0,nrows—1); /¥ error vector ¥
z=vector(0,num_vectors+look_ahead);  / input vector array #
y=vector(0,num.vectors);  /* output vector array #
d=vector(0,num_vectors+look_ahead); /x desired output array ¥

/* Initialize variables to zero #

J[0)=][1]=0.0;
loopi(num_vectors)
eli] = yli] =d[i] = 2[i] = 0.;

return;

}

/****************************************************************4
void read.data()

ifp=fopen(datafile, "r");

fskip_line(ifp);

locpi(num_vectors+look_ahead)
fscanf(ifp,"% £ %f",&z[i],&d[i]);

fclose(ifp);

return;

}

Ak koo ok ok ok oo ok Aokl ok ok ok ok ok ok ok ok ok ok sk ok Ak o sk sk ko ke ok ok

93




\{loid MEAN()

float X=0.;
loopi(num_vectors)

X +=z[i];
mean = 1.0/(float)num_vectors * X;
printf(*$s = %f\n","Mean",mean);
return ;

}

JHck sk sk ok ok sk ook ko ok oh sk ko skalok ek ok ok ok ok ik ok ik ok ok skl okl kR stk ok sk skskok ok kol
void MEAN_SQ()

float X=0.;
loopi(num_vectors)

X += z[i]*z[i];
mean_sq = 1.0/(float)num_vectors * X;
printf(*$s = %f\n","Mean Sq",mean_sq);
return;

}

[tk ko ki kok Rk ko ok kkokkokokok ok ok ok ok ok ok ok okokskok kb aok ok kb ok ok ok skok o
void VAR()

var = mean_sq — mean+mean;
printf("%s = $f\n*,*Var",var);
return;

}

[tk ok dok ootk sk ok ko dok ki okok kK sokok ko sokok s sk ko ok ok sk ok A Kok sk ok sk sk ok ok o
void COV()

float X=0.;
loopi(num_vectors)
X += z[i}*z[i+look_ahead];
cov = (1.0/(float)num_vectors * X) — (mean+mean);
printf("$s = $£f\n","Cov",cov);
retumn ;

}

Fkdcde ke Ak sk ok ok Aok ok Aok Aok kok ok Ak Aok ok kA Kk koo 4k sk kR ok o

void compute_output()

{

9




printf("$s\n","Output ");
loopi(num_vectors)

yli] = mean+(cov/var)*(z[i]—mean);
return;

}

[kt sk ok o koo ok ok o ke sk o ok ok ok ke ok ok ko sk s o ko sk ksl kol ok ke sk ok ok ok ke ook ok kb ol
void compute_error()

float X=0.;
loopi(num_vectors){
e[i] = z[i+look-ahead] — y[il;
X +=e[i] * efi];

error = 1.0/(float)num.vectors * X;
printf(*$s = %f\n","Error"error);
return ;

}

/****************************************************************4
void print_results()

printf("%s","Printing results...");
ofp = fopen(*stat_results.dat*, "w");
loopi(num_vectors)

fprintf(ofp,*$ £ % £ % £\n"y[i}dlil.efi]);
fclose(ofp);
ofp = fopen("stat_out .dat", "w*);
loopi(num_vectors)

fprintf(ofp,” % £\n",y[il);
fclose(ofp);
ofp = fopen(*stat_des.dat", "w");
loopi(num_vectors)

fprintf(ofp,”% £\n",d[i]);
fclose(ofp);
ofp = fopen("stat_error.dat", "w");
loopi(num_vectors)

fprintf(ofp,"$ £\n".eli]);
fclose(ofp);
printf(*$s\n","Done. "),

}

g T Py e P P PR TP RS R PR T

void check_file() /+ Written 10 Jul 91, RLL. #

95




FILE *afp;

afp = fopen(datafile,"r "),

if(afp == NULL) {
Ixstrcpy(afile, "File not found");¥
pantf("\n%s %s\n*datafile,": File not found.");
exit(0);

}
else fclose(afp);
return;

}

T s L T I T E o R T R T

/% SP_DEFS. H #%x %k kkskkdehkdhdkikkdkkokdkkikkiiokiokkk ik kkkkkdkkkk

File containing function declarations and variable
declarations for the main program called sp.c.

date: 17 Oct 91
written by: Randall L. Lindsey

*****************************************************************¥
float »vector();

FILE =*ifp, *ofp, *ifpl, *ofpl;

int run=1;

char str{80], xdatafile;

int nrows, ncols, i, j, k, 1, m, n;

int epochs, a, b, t, look_ahead;

int num_inputs, num_outputs, num_nodes, num_vectors, seed;
float alpha, alphal, J[2], sum, mean, mean_sq, var, cov, error;
float *e, *z, *y, *d;

void MEAN();

void MEAN_SQ();

void VAR();

void COV();

void initialize();

void read_data();

void compute_error();

void print_results();

void check_file();

void compute_output();

T T T T T T T ey e T T e T Y e 1 Ll T s )

96




[+x PARAM_SP.DAT sxxxkscksonkskskorskkdmdokdoksokskkokdkokiorskokskonskokok ok sk ok ook kol
200 3.0 153

Jesskokok s ok sk ke sk sk ook Aokl ko ok Rk k sk ksl ok sk ko koo ok sk ok o ok Aokok sk sk ok ol

97




10.

11.

12.

13.

14.

Bibliography

. Almeida, L. B. “A Learning Rule for Asynchronous Perceptrons With Feedback

in a Combinatorial Environment.” In Proceedings of the IEEE First International
Conference on Neural Networks, II, pages 609-618, June 1987.

. Fang, Yan and Terrence J. Sejnowski. “Faster Learning for Dynamic Recurrent

Backpropagation,” Neural Computation, 2:270-273 (1990).

Gaskill, Jack D. Linear Systems, Fourier Transforms, and Optics. New York: John
Wiley and Sons, 1978.

. Hecht-Nielsen, Robert. Neurocomputing. Reading, Massachusetts: Addison-Wesley

Publishing Co., January 1991,

. Hopfield, J. J. “Neural Networks as Physical Systems with Emergent Collective

Computational Abilities.” In Proceedings of the National Academy of Sciences, 79,
pages 2554-2558, 1982.

. Lapedes, A. and R. Farber. “A Self-Optimizing, Nonsymmetrical Neural Net for

Content Addressable Memory and Pattern Recognition,” Physica D, 22, pages 247~
259 (1986).

. Le, Capt Phung D. Model-Based 3-D Recognition System Using Gabor Features

and Neural Networks. MS thesis, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1990.

Mish, Fredrick C., editor. Webster's Ninth New Collegiate Dictionary (First digital
Edition). Boston: Merriam-Webster Inc., and NeXT Computer, Inc., 1988.

. Pearlmutter, B. A, “Learning Siate Space Trajectories In Recurrent Neural Net-

works,” Neural Computation, 1:263-269 (1989).

Pineda, Fernando J. “Generalization of Back-Propagation to Recurrent Neural Net-
works,” Physical Review Letters, 59-19, pages 2229-2232 (November 1987).

Pineda, Fernando J. “Recurrent Backpropagation and the Dynamical Approach to
Adaptive Neural Computation,” Neural Computation, 1:161-172 (1989).

Press, William H. and others. Numerical Recipies in C. Cambridge: The MIT Press,
1991,

Rogers, Steven K. and Matthew Kabrisky. An Introduction to Biological and Artificial
Neural Networks for Pattern Recognition. Washington: SPIE Optical Engineering
Press, 1991.

Rohwer, Richard and Bruce Forrest. “Training Time-Dependence in Neural Net-
works.” In Proceedings of the IEEE First International Conference on Neural Net-
works, II, pages 701-708, June 1987.

98




15.

16.

17.

18.

19.

20.

21.

22

23,

24,

Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Washington: Spartan Books, 1959.

Ruck, Dennis W. Characterization of Multilayer Perceptrons and their Application
to Multisensor Automatic Target Detection. PhD dissertation, Air Force Institute of
Technology, Wright-Patterson AFB, OH, December 1990 (AFIT/DS/ENG/90-2).

Ruck, Dennis W., et al. “Feature Selection Using a Multilayer Perceptron,” The
Journal of Neural Network Computing, 2(2) (Fall 1990).

Rumelhart, David E., et al. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1. Cambridge: The MIT Press, 1988.

Stright, James R. A Neural Network Implementation of Chaotic Time Series Pre-
diction. MS thesis, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1988.

Switzer, Capt Shane R. Frequency Domain Speech Coding. MS thesis, School of

Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1991.

Williams, Ronald J. and Jing Peng. “An Efficient Gradient-Based Algorithm for On-
line Training of Recurrent Network Trajectories,” Neural computation, 2:490-501
(1990).

Williams, Ronald J. and David Zipser. “Experimental Analysis of the Real-time
Recurrent Learning Algorithm,” Connection Science, 1(1):87-111 (1989).

Williams, Ronald J. and David Zipser. “A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks,” Neural Computation, 1:270-280 (1989).

Zipser, David. “A Subgrouping Strategy that Reduces Complexity and Speeds Up
Learning in Recurrent Networks,” Neural Computation, 1:552-558 (1990).

99




